Feasibility Study of Single-Point Incremental Forming for Discontinuous-Fiber CFRP Using Oil-Bath Heating

IF 0.9 Q4 AUTOMATION & CONTROL SYSTEMS International Journal of Automation Technology Pub Date : 2024-05-05 DOI:10.20965/ijat.2024.p0433
Tatsuki Ikari, Hidetake Tanaka
{"title":"Feasibility Study of Single-Point Incremental Forming for Discontinuous-Fiber CFRP Using Oil-Bath Heating","authors":"Tatsuki Ikari, Hidetake Tanaka","doi":"10.20965/ijat.2024.p0433","DOIUrl":null,"url":null,"abstract":"Although, three-dimensional printing has several advantages, however there are currently many limitations. In particular, printed products using composite materials such as fiber-reinforced plastic have yet to achieve the same mechanical properties as those obtained from conventional manufacturing methods. In addition, fabricating thin plates or thin shell shapes with sufficient strength is challenging. Incremental forming enables high-mix, low-volume production of thin sheets. This method applies incremental deformation to thin sheets, the desired shape is obtained by accumulating the deformation, and no dies are required. Carbon-fiber-reinforced plastic (CFRP) materials have high specific strength. Discontinuous-fiber CFRP is capable of large plastic deformation under appropriate conditions due to the discontinuity of the reinforcement, and its mechanical properties are nearly isotropic due to the random fiber arrangement. The authors focused on this property and studied the application of single-point incremental forming to discontinuous carbon-fiber-reinforced polyamides. In this study, the workpiece was formed by heating it locally to a deformable temperature by the frictional heat between the rotating tool and the workpiece. The forming experiment was also conducted in an oil bath to keep the entire material at a suitable forming temperature. The results showed that the spindle speed affected forming results even in an oil bath and that heating using an oil bath suppressed deviations from the sine law for thickness and wall angle due to elastic deformation.","PeriodicalId":43716,"journal":{"name":"International Journal of Automation Technology","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automation Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/ijat.2024.p0433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Although, three-dimensional printing has several advantages, however there are currently many limitations. In particular, printed products using composite materials such as fiber-reinforced plastic have yet to achieve the same mechanical properties as those obtained from conventional manufacturing methods. In addition, fabricating thin plates or thin shell shapes with sufficient strength is challenging. Incremental forming enables high-mix, low-volume production of thin sheets. This method applies incremental deformation to thin sheets, the desired shape is obtained by accumulating the deformation, and no dies are required. Carbon-fiber-reinforced plastic (CFRP) materials have high specific strength. Discontinuous-fiber CFRP is capable of large plastic deformation under appropriate conditions due to the discontinuity of the reinforcement, and its mechanical properties are nearly isotropic due to the random fiber arrangement. The authors focused on this property and studied the application of single-point incremental forming to discontinuous carbon-fiber-reinforced polyamides. In this study, the workpiece was formed by heating it locally to a deformable temperature by the frictional heat between the rotating tool and the workpiece. The forming experiment was also conducted in an oil bath to keep the entire material at a suitable forming temperature. The results showed that the spindle speed affected forming results even in an oil bath and that heating using an oil bath suppressed deviations from the sine law for thickness and wall angle due to elastic deformation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用油浴加热对非连续纤维 CFRP 进行单点增量成型的可行性研究
虽然三维打印有很多优点,但目前还存在很多局限性。特别是,使用纤维增强塑料等复合材料的印刷产品尚未达到与传统制造方法相同的机械性能。此外,制造具有足够强度的薄板或薄壳形状也是一项挑战。增量成形技术可实现薄板的高混合、小批量生产。这种方法对薄板进行增量变形,通过累积变形量获得所需的形状,而且无需模具。碳纤维增强塑料(CFRP)材料具有很高的比强度。由于增强体的不连续,非连续纤维 CFRP 能够在适当条件下产生较大的塑性变形,而且由于纤维的随机排列,其机械性能几乎是各向同性的。作者针对这一特性,研究了单点增量成形在非连续碳纤维增强聚酰胺中的应用。在这项研究中,通过旋转工具和工件之间的摩擦热,将工件局部加热到可变形温度,从而使工件成形。成型实验还在油浴中进行,以保持整个材料处于合适的成型温度。结果表明,即使在油浴中,主轴转速也会影响成形结果,而且使用油浴加热可抑制弹性变形导致的厚度和壁角偏离正弦规律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Automation Technology
International Journal of Automation Technology AUTOMATION & CONTROL SYSTEMS-
CiteScore
2.10
自引率
36.40%
发文量
96
期刊最新文献
Influence of Pilot Hole and Work Material Hardness on Thread Milling with a Wireless Holder System Effect of Different Feed Rates on Chip Evacuation in Drilling of Lead-Free Brass with a Small-Diameter Drill Special Issue on Recent Advanced Manufacturing Science and Technology Initial Wear of Fixed Diamond Wire Tool –Effect of Slurry Assisted Slicing on Machining Mechanism— Tool Path Design of Metal Powder Extrusion in Additive Manufacturing for Suppressing Shape Error Caused During Sintering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1