Inner Modulation Controlled Process for Suppression of Chatter Vibration in Double Inserts Turning

IF 0.9 Q4 AUTOMATION & CONTROL SYSTEMS International Journal of Automation Technology Pub Date : 2024-05-05 DOI:10.20965/ijat.2024.p0374
Toshifumi Atsuta, Hidenori Yoshimura, Takashi Matsumura
{"title":"Inner Modulation Controlled Process for Suppression of Chatter Vibration in Double Inserts Turning","authors":"Toshifumi Atsuta, Hidenori Yoshimura, Takashi Matsumura","doi":"10.20965/ijat.2024.p0374","DOIUrl":null,"url":null,"abstract":"A novel cutting manner is presented to control regenerative chatter vibration in double inserts cutting, in which the forward and the backward inserts cut workpiece simultaneously with phase difference in the modulation of finished surface. In double inserts cutting, the forward insert is clamped above the backward insert. Both the inserts are positioned symmetrically with a height offset with respect to the workpiece rotation center. The forward insert mainly removes the material; while the backward insert cuts a part of the inner modulation to lose the regular excitation. The exciting force is also reduced with the cutting thickness of the forward insert after a workpiece revolution. Because the theoretical position offset of the inserts in the feed direction is small, the side cutting edges of inserts are aligned in the same position. The process parameters are determined by estimating the removal volume of the backward insert with the phase shift. The range of the cutting speed and the height offset are given by the frequency of the chatter vibration, which is nearly the same as the natural frequency of the workpiece in single degree of freedom. The proposed cutting manner is validated using comparison between the single insert and double inserts cuttings.","PeriodicalId":43716,"journal":{"name":"International Journal of Automation Technology","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automation Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/ijat.2024.p0374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

A novel cutting manner is presented to control regenerative chatter vibration in double inserts cutting, in which the forward and the backward inserts cut workpiece simultaneously with phase difference in the modulation of finished surface. In double inserts cutting, the forward insert is clamped above the backward insert. Both the inserts are positioned symmetrically with a height offset with respect to the workpiece rotation center. The forward insert mainly removes the material; while the backward insert cuts a part of the inner modulation to lose the regular excitation. The exciting force is also reduced with the cutting thickness of the forward insert after a workpiece revolution. Because the theoretical position offset of the inserts in the feed direction is small, the side cutting edges of inserts are aligned in the same position. The process parameters are determined by estimating the removal volume of the backward insert with the phase shift. The range of the cutting speed and the height offset are given by the frequency of the chatter vibration, which is nearly the same as the natural frequency of the workpiece in single degree of freedom. The proposed cutting manner is validated using comparison between the single insert and double inserts cuttings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于抑制双刀片车削中颤振的内调制控制工艺
提出了一种新型切削方式来控制双刀片切削中的再生颤振,在这种方式中,前刀片和后刀片同时切削工件,但在加工表面的调制上存在相位差。在双刀片切削中,前刀片夹紧在后刀片上方。两个刀片的位置对称,高度偏离工件旋转中心。前刀片主要去除材料,而后刀片则切削部分内部调制材料,以减小常规激振力。工件旋转一圈后,激振力也会随着前向刀片切削厚度的增加而减小。由于刀片在进给方向上的理论位置偏移很小,因此刀片的侧切削刃在同一位置对齐。通过相移估算后刀片的切削量来确定工艺参数。切削速度和高度偏移的范围由颤振频率给出,颤振频率与工件单自由度的固有频率几乎相同。通过对单刀片和双刀片切削的比较,验证了所提出的切削方式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Automation Technology
International Journal of Automation Technology AUTOMATION & CONTROL SYSTEMS-
CiteScore
2.10
自引率
36.40%
发文量
96
期刊最新文献
Influence of Pilot Hole and Work Material Hardness on Thread Milling with a Wireless Holder System Effect of Different Feed Rates on Chip Evacuation in Drilling of Lead-Free Brass with a Small-Diameter Drill Special Issue on Recent Advanced Manufacturing Science and Technology Initial Wear of Fixed Diamond Wire Tool –Effect of Slurry Assisted Slicing on Machining Mechanism— Tool Path Design of Metal Powder Extrusion in Additive Manufacturing for Suppressing Shape Error Caused During Sintering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1