{"title":"Impact Dynamics Simulation for MR Fluid Saturated Fabric Barriers","authors":"Kwon Joong Son, E. Fahrenthold","doi":"10.1115/1.4065438","DOIUrl":null,"url":null,"abstract":"\n Experimental research has investigated the non-Newtonian fluid augmentation of fabric barrier materials, aimed at adding impact energy dissipation mechanisms and thereby improving ballistic performance. Published experimental results on the effectiveness of these augmentations is mixed, and numerical models supporting compli- mentary modeling research are lacking, primarily due to the multiple geometric and material nonlinearities present in the system. The combination of Hamiltonian mechanics with hybrid particle-element kinematics offers a very general modeling approach to impact simulation for these systems, one which includes interstitial fluid-structure interactions, the yarn level dynamics of projectile impacts, and yarn fracture without the introduction of slidelines and without mass or energy discard. Three-dimensional impact simulations show good agreement with published experiments for magnetorheological (MR) fluid saturated Kevlar, including fabric tested under bulk field excitation of the target region and magnetomechanically edge-clamped fabric sliding in an excited air gap. The Hamiltonian method employed to develop the system level model allows for computationally efficient partitioning of the modeled physics while maintaining a thermodynamically consistent formulation.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"119 3","pages":""},"PeriodicalIF":17.7000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4065438","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Experimental research has investigated the non-Newtonian fluid augmentation of fabric barrier materials, aimed at adding impact energy dissipation mechanisms and thereby improving ballistic performance. Published experimental results on the effectiveness of these augmentations is mixed, and numerical models supporting compli- mentary modeling research are lacking, primarily due to the multiple geometric and material nonlinearities present in the system. The combination of Hamiltonian mechanics with hybrid particle-element kinematics offers a very general modeling approach to impact simulation for these systems, one which includes interstitial fluid-structure interactions, the yarn level dynamics of projectile impacts, and yarn fracture without the introduction of slidelines and without mass or energy discard. Three-dimensional impact simulations show good agreement with published experiments for magnetorheological (MR) fluid saturated Kevlar, including fabric tested under bulk field excitation of the target region and magnetomechanically edge-clamped fabric sliding in an excited air gap. The Hamiltonian method employed to develop the system level model allows for computationally efficient partitioning of the modeled physics while maintaining a thermodynamically consistent formulation.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.