Exploiting Data Diversity in Multi-Domain Federated Learning

Hussain Ahmad Madni, Rao Muhammad Umer, G. Foresti
{"title":"Exploiting Data Diversity in Multi-Domain Federated Learning","authors":"Hussain Ahmad Madni, Rao Muhammad Umer, G. Foresti","doi":"10.1088/2632-2153/ad4768","DOIUrl":null,"url":null,"abstract":"\n Federated Learning (FL) is an evolving machine learning technique that allows collaborative model training without sharing the original data among participants. In real-world scenarios, data residing at multiple clients are often heterogeneous in terms of different resolutions, magnifications, scanners, or imaging protocols, and thus challenging for global FL model convergence in collaborative training. Most of the existing FL methods consider data heterogeneity within one domain by assuming same data variation in each client site. In this paper, we consider data heterogeneity in FL with different domains of heterogeneous data by raising the problems of domain-shift, class-imbalance, and missing data. We propose a method, MDFL (Multi-Domain Federated Learning) as a solution to heterogeneous training data from multiple domains by training robust Transformer model. We use two loss functions, one for correctly predicting class labels and other for encouraging similarity and dissimilarity over latent features, to optimize the global FL model. We perform various experiments using different convolution-based networks and non-convolutional Transformer architectures on multi-domain datasets. We evaluate the proposed approach on benchmark datasets and compare with the existing FL methods. Our results show the superiority of the proposed approach which performs better in term of robust FL global model than the exiting methods.","PeriodicalId":503691,"journal":{"name":"Machine Learning: Science and Technology","volume":"16 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning: Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-2153/ad4768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Federated Learning (FL) is an evolving machine learning technique that allows collaborative model training without sharing the original data among participants. In real-world scenarios, data residing at multiple clients are often heterogeneous in terms of different resolutions, magnifications, scanners, or imaging protocols, and thus challenging for global FL model convergence in collaborative training. Most of the existing FL methods consider data heterogeneity within one domain by assuming same data variation in each client site. In this paper, we consider data heterogeneity in FL with different domains of heterogeneous data by raising the problems of domain-shift, class-imbalance, and missing data. We propose a method, MDFL (Multi-Domain Federated Learning) as a solution to heterogeneous training data from multiple domains by training robust Transformer model. We use two loss functions, one for correctly predicting class labels and other for encouraging similarity and dissimilarity over latent features, to optimize the global FL model. We perform various experiments using different convolution-based networks and non-convolutional Transformer architectures on multi-domain datasets. We evaluate the proposed approach on benchmark datasets and compare with the existing FL methods. Our results show the superiority of the proposed approach which performs better in term of robust FL global model than the exiting methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在多域联合学习中利用数据多样性
联合学习(FL)是一种不断发展的机器学习技术,它允许在参与者之间不共享原始数据的情况下进行协作模型训练。在现实世界的场景中,驻留在多个客户端的数据通常是异构的,如不同的分辨率、放大率、扫描仪或成像协议,因此在协作训练中全局 FL 模型收敛具有挑战性。现有的 FL 方法大多通过假设每个客户端站点的数据变化相同来考虑一个域内的数据异质性。在本文中,我们通过提出域偏移、类不平衡和数据缺失等问题,考虑了 FL 中不同域异构数据的数据异质性。我们提出了一种 MDFL(多域联合学习)方法,通过训练鲁棒 Transformer 模型来解决来自多个域的异构训练数据。我们使用两个损失函数(一个用于正确预测类标签,另一个用于鼓励潜在特征的相似性和不相似性)来优化全局 FL 模型。我们在多域数据集上使用不同的卷积网络和非卷积变换器架构进行了各种实验。我们在基准数据集上对所提出的方法进行了评估,并与现有的 FL 方法进行了比较。我们的结果表明了所提出方法的优越性,它在鲁棒 FL 全局模型方面的表现优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the Benefit of Attention in Inverse Design of Thin Films Filters Predictive Models for Inorganic Materials Thermoelectric Properties with Machine Learning Benchmarking machine learning interatomic potentials via phonon anharmonicity Application of Deep Learning-based Fuzzy Systems to Analyze the Overall Risk of Mortality in Glioblastoma Multiforme Formation Energy Prediction of Neutral Single-Atom Impurities in 2D Materials using Tree-based Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1