The synergy mechanism of CsSnI3 and LiTFSI enhancing the electrochemical performance of PEO-based solid-state batteries

IF 12 Carbon Neutralization Pub Date : 2024-05-03 DOI:10.1002/cnl2.134
Rui Sun, Ruixiao Zhu, Jiafeng Li, Zhongxiao Wang, Yuting Zhu, Longwei Yin, Chengxiang Wang, Rutao Wang, Zhiwei Zhang
{"title":"The synergy mechanism of CsSnI3 and LiTFSI enhancing the electrochemical performance of PEO-based solid-state batteries","authors":"Rui Sun,&nbsp;Ruixiao Zhu,&nbsp;Jiafeng Li,&nbsp;Zhongxiao Wang,&nbsp;Yuting Zhu,&nbsp;Longwei Yin,&nbsp;Chengxiang Wang,&nbsp;Rutao Wang,&nbsp;Zhiwei Zhang","doi":"10.1002/cnl2.134","DOIUrl":null,"url":null,"abstract":"<p>Lithium metal solid-state battery is the first choice of batteries for electromobiles and consumer electronic products because of the specific capacity of 3860 mAh g<sup>−1</sup> and high electrochemical potential (−3.04 V) of Li metal. Flexible polymer solid electrolytes have become the optimal solution to produce high energy density lithium batteries with arbitrary size and shape. In this work, we introduce a halide perovskite, CsSnI<sub>3,</sub> into the polyethylene oxide/lithium bis-(trifluoromethanesuphone)imide (PEO–LiTFSI) polymer matrix. The CsSnI<sub>3</sub> could form a Li<sub><i>x</i></sub>Sn alloy with Li, leading to homogenization of the electric field and Li<sup>+</sup>-flux at the interface, Sn atom also bonds with the TFSI<sup>−</sup> anion to provide more dissociated Li<sup>+</sup>. Besides that, the I atom could interact with Li to form an electronic insulation with a strong blocking effect on electron tunneling. As a proof of concept, the synergy mechanism of the PEO–LiTFSI–CsSnI<sub>3</sub> electrolyte improves the stable cycle life of the symmetric battery to more than 500 h, and the Li<sup>+</sup> conductivity raised to 6.1 × 10<sup>−4 </sup>S cm<sup>−1</sup> at 60°C. The application of the “zwitter ions analog” halide perovskite in PEO–LiTFSI provides a new choice among various methods to improve the electrochemical performance of polymer solid-state batteries.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"3 4","pages":"597-605"},"PeriodicalIF":12.0000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.134","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Neutralization","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium metal solid-state battery is the first choice of batteries for electromobiles and consumer electronic products because of the specific capacity of 3860 mAh g−1 and high electrochemical potential (−3.04 V) of Li metal. Flexible polymer solid electrolytes have become the optimal solution to produce high energy density lithium batteries with arbitrary size and shape. In this work, we introduce a halide perovskite, CsSnI3, into the polyethylene oxide/lithium bis-(trifluoromethanesuphone)imide (PEO–LiTFSI) polymer matrix. The CsSnI3 could form a LixSn alloy with Li, leading to homogenization of the electric field and Li+-flux at the interface, Sn atom also bonds with the TFSI anion to provide more dissociated Li+. Besides that, the I atom could interact with Li to form an electronic insulation with a strong blocking effect on electron tunneling. As a proof of concept, the synergy mechanism of the PEO–LiTFSI–CsSnI3 electrolyte improves the stable cycle life of the symmetric battery to more than 500 h, and the Li+ conductivity raised to 6.1 × 10−4 S cm−1 at 60°C. The application of the “zwitter ions analog” halide perovskite in PEO–LiTFSI provides a new choice among various methods to improve the electrochemical performance of polymer solid-state batteries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CsSnI3和LiTFSI提高聚醚醚酮固态电池电化学性能的协同机制
金属锂固态电池具有 3860 mAh g-1 的比容量和高电化学电位(-3.04 V),是电动汽车和消费电子产品的首选电池。柔性聚合物固体电解质已成为生产任意尺寸和形状的高能量密度锂电池的最佳解决方案。在这项研究中,我们在聚氧化乙烯/双(三氟甲磺酸)亚胺锂(PEO-LiTFSI)聚合物基体中引入了卤化物包晶 CsSnI3。CsSnI3 能与 Li 形成 LixSn 合金,导致界面上电场和 Li+ 通量的均匀化,Sn 原子还能与 TFSI- 阴离子结合,提供更多离解的 Li+。此外,I 原子还能与 Li 相互作用,形成电子绝缘层,对电子隧道具有很强的阻挡作用。作为概念验证,PEO-LiTFSI-CsSnI3 电解质的协同机制将对称电池的稳定循环寿命提高到 500 小时以上,60°C 时的 Li+ 电导率提高到 6.1 × 10-4 S cm-1。在 PEO-LiTFSI 中应用 "齐聚物离子类似物 "卤化物包晶为改善聚合物固态电池的电化学性能提供了一种新的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vacancy-Suppressed RuO2 Assemblies Promote the Adsorbate Evolution Mechanism for Efficient and Durable Acidic Oxygen Evolution Reaction AgWOS Bimetallic Oxysulfides With Synergistic Coupling of Heterovalent States and Vacancy Defects for Boosting Photocatalytic Hydrogen Evolution: An Insightful Case of the W-Doping Plus Hydrazine-Driven Design Thermal Gradients Optimizing the Microstructure of Hard Carbon for Practical Sodium-Ion Batteries Unraveling Tensile Strain Effect via W Single Atoms Onto MnO2 for Enhanced Water Oxidation Recent Advances in the Construction of Energy Storage Functional Materials Utilizing Electrochemical Exfoliation and Dispersion Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1