{"title":"The synergy mechanism of CsSnI3 and LiTFSI enhancing the electrochemical performance of PEO-based solid-state batteries","authors":"Rui Sun, Ruixiao Zhu, Jiafeng Li, Zhongxiao Wang, Yuting Zhu, Longwei Yin, Chengxiang Wang, Rutao Wang, Zhiwei Zhang","doi":"10.1002/cnl2.134","DOIUrl":null,"url":null,"abstract":"<p>Lithium metal solid-state battery is the first choice of batteries for electromobiles and consumer electronic products because of the specific capacity of 3860 mAh g<sup>−1</sup> and high electrochemical potential (−3.04 V) of Li metal. Flexible polymer solid electrolytes have become the optimal solution to produce high energy density lithium batteries with arbitrary size and shape. In this work, we introduce a halide perovskite, CsSnI<sub>3,</sub> into the polyethylene oxide/lithium bis-(trifluoromethanesuphone)imide (PEO–LiTFSI) polymer matrix. The CsSnI<sub>3</sub> could form a Li<sub><i>x</i></sub>Sn alloy with Li, leading to homogenization of the electric field and Li<sup>+</sup>-flux at the interface, Sn atom also bonds with the TFSI<sup>−</sup> anion to provide more dissociated Li<sup>+</sup>. Besides that, the I atom could interact with Li to form an electronic insulation with a strong blocking effect on electron tunneling. As a proof of concept, the synergy mechanism of the PEO–LiTFSI–CsSnI<sub>3</sub> electrolyte improves the stable cycle life of the symmetric battery to more than 500 h, and the Li<sup>+</sup> conductivity raised to 6.1 × 10<sup>−4 </sup>S cm<sup>−1</sup> at 60°C. The application of the “zwitter ions analog” halide perovskite in PEO–LiTFSI provides a new choice among various methods to improve the electrochemical performance of polymer solid-state batteries.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"3 4","pages":"597-605"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.134","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Neutralization","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Lithium metal solid-state battery is the first choice of batteries for electromobiles and consumer electronic products because of the specific capacity of 3860 mAh g−1 and high electrochemical potential (−3.04 V) of Li metal. Flexible polymer solid electrolytes have become the optimal solution to produce high energy density lithium batteries with arbitrary size and shape. In this work, we introduce a halide perovskite, CsSnI3, into the polyethylene oxide/lithium bis-(trifluoromethanesuphone)imide (PEO–LiTFSI) polymer matrix. The CsSnI3 could form a LixSn alloy with Li, leading to homogenization of the electric field and Li+-flux at the interface, Sn atom also bonds with the TFSI− anion to provide more dissociated Li+. Besides that, the I atom could interact with Li to form an electronic insulation with a strong blocking effect on electron tunneling. As a proof of concept, the synergy mechanism of the PEO–LiTFSI–CsSnI3 electrolyte improves the stable cycle life of the symmetric battery to more than 500 h, and the Li+ conductivity raised to 6.1 × 10−4 S cm−1 at 60°C. The application of the “zwitter ions analog” halide perovskite in PEO–LiTFSI provides a new choice among various methods to improve the electrochemical performance of polymer solid-state batteries.