Ground state of two-species spin–orbit-coupled in mass-imbalanced Bose condensates

IF 17.7 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-05-03 DOI:10.1139/cjp-2023-0318
Qiang Zhao
{"title":"Ground state of two-species spin–orbit-coupled in mass-imbalanced Bose condensates","authors":"Qiang Zhao","doi":"10.1139/cjp-2023-0318","DOIUrl":null,"url":null,"abstract":"In this paper, we study the ground state of two-component spin–orbit-coupled (SOC) Bose–Einstein condensates with mass imbalance. Our results are based on the framework of mean-field Gross–Pitaevskii theory. The effects of unequal atomic mass and SOC strength are studied. Different density structures such as heliciform stripes, linear stripes and string vortex chains are found. Different density structures such as heliciform stripes, linear stripes and string vortex chains are found. With the increase of SOC strength, the azimuthal phase separation is kept while radial phase separation is broken. In addition, increasing the mass ratio is unfavorable to vortex formation, whereas more vortices can be generated by increasing the SOC strength. We also discuss the physical quantities such as angular momentum per atom and spin polarisation, for a larger mass ratio, showing that angular momentum gets a little bigger as the SOC strength increases and the first-order phase transition does not exist.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"115 10","pages":""},"PeriodicalIF":17.7000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1139/cjp-2023-0318","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the ground state of two-component spin–orbit-coupled (SOC) Bose–Einstein condensates with mass imbalance. Our results are based on the framework of mean-field Gross–Pitaevskii theory. The effects of unequal atomic mass and SOC strength are studied. Different density structures such as heliciform stripes, linear stripes and string vortex chains are found. Different density structures such as heliciform stripes, linear stripes and string vortex chains are found. With the increase of SOC strength, the azimuthal phase separation is kept while radial phase separation is broken. In addition, increasing the mass ratio is unfavorable to vortex formation, whereas more vortices can be generated by increasing the SOC strength. We also discuss the physical quantities such as angular momentum per atom and spin polarisation, for a larger mass ratio, showing that angular momentum gets a little bigger as the SOC strength increases and the first-order phase transition does not exist.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
质量不平衡玻色凝聚体中双物种自旋轨道耦合的基态
本文研究了质量不平衡的双组分自旋轨道耦合(SOC)玻色-爱因斯坦凝聚体的基态。我们的研究结果基于均场格罗斯-皮塔耶夫斯基理论框架。我们研究了原子质量和 SOC 强度不平衡的影响。发现了螺旋状条纹、线性条纹和弦涡链等不同的密度结构。发现了螺旋状条纹、线性条纹和弦涡链等不同密度结构。随着 SOC 强度的增加,方位相分离得以保持,而径向相分离被打破。此外,增加质量比不利于涡旋的形成,而增加 SOC 强度则可以产生更多的涡旋。我们还讨论了质量比越大时每个原子的角动量和自旋极化等物理量,结果表明,随着 SOC 强度的增加,角动量会变得更大一些,而一阶相变并不存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Theoretical Insights on the Regulatory Mechanisms of Structure and Doping on the Photoluminescence of Ligand Protected Gold Nanoclusters Aluminylenes: Synthesis, Reactivity, and Catalysis Biologically Adaptable Quantum Dots: Intracellular in Situ Synthetic Strategy and Mechanism Combating Antiviral Drug Resistance: A Multipronged Strategy Atomically Precise Metal Clusters for NIR-II Imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1