{"title":"Ground state of two-species spin–orbit-coupled in mass-imbalanced Bose condensates","authors":"Qiang Zhao","doi":"10.1139/cjp-2023-0318","DOIUrl":null,"url":null,"abstract":"In this paper, we study the ground state of two-component spin–orbit-coupled (SOC) Bose–Einstein condensates with mass imbalance. Our results are based on the framework of mean-field Gross–Pitaevskii theory. The effects of unequal atomic mass and SOC strength are studied. Different density structures such as heliciform stripes, linear stripes and string vortex chains are found. Different density structures such as heliciform stripes, linear stripes and string vortex chains are found. With the increase of SOC strength, the azimuthal phase separation is kept while radial phase separation is broken. In addition, increasing the mass ratio is unfavorable to vortex formation, whereas more vortices can be generated by increasing the SOC strength. We also discuss the physical quantities such as angular momentum per atom and spin polarisation, for a larger mass ratio, showing that angular momentum gets a little bigger as the SOC strength increases and the first-order phase transition does not exist.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"115 10","pages":""},"PeriodicalIF":17.7000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1139/cjp-2023-0318","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study the ground state of two-component spin–orbit-coupled (SOC) Bose–Einstein condensates with mass imbalance. Our results are based on the framework of mean-field Gross–Pitaevskii theory. The effects of unequal atomic mass and SOC strength are studied. Different density structures such as heliciform stripes, linear stripes and string vortex chains are found. Different density structures such as heliciform stripes, linear stripes and string vortex chains are found. With the increase of SOC strength, the azimuthal phase separation is kept while radial phase separation is broken. In addition, increasing the mass ratio is unfavorable to vortex formation, whereas more vortices can be generated by increasing the SOC strength. We also discuss the physical quantities such as angular momentum per atom and spin polarisation, for a larger mass ratio, showing that angular momentum gets a little bigger as the SOC strength increases and the first-order phase transition does not exist.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.