Arima Model to Predict the Prevalence of Diabetes Type 1 and Type 2 Patients: A Case Study of Jos University Teaching Hospital

Termen Nanfwang Yunana, K. E. Lasisi, A. M. Kwami, Douglas Jah Pam, Sheyi Mafolasire, Chibuike John Echebiri, Friday Ezekiel Danung, S. Gambo
{"title":"Arima Model to Predict the Prevalence of Diabetes Type 1 and Type 2 Patients: A Case Study of Jos University Teaching Hospital","authors":"Termen Nanfwang Yunana, K. E. Lasisi, A. M. Kwami, Douglas Jah Pam, Sheyi Mafolasire, Chibuike John Echebiri, Friday Ezekiel Danung, S. Gambo","doi":"10.9734/ajpas/2024/v26i4612","DOIUrl":null,"url":null,"abstract":"Diabetes Mellitus is a huge burden for human health, increasing number of patient is likely to result in rising demand for the medical emergencies. Due to limited number of hospitals with standard laboratory test kits to differentiate between type 1 and type 2 diabetes it is important to forecast the future incidences and prepare with proper resource planning. The monthly number of Diabetes patients obtained from Jos University Teaching Hospital is fitted by autoregressive integrated moving average (ARIMA) model. Dataset starting from January, 2010 to December,2020. Using ARIMA, several models were evaluated based on the Bayesian Information Criterion (BIC) and Ljung-Box Q statistics. ARIMA(3, 1, 1) is found to be better and used to describe and predict the future trends of Diabetes  type 1 and ARIMA(1,1,1) is a better model to predict the future prevalence of diabetes type 2. Therefore, the proposed model will help in the appropriate planning and allocation of resources for emergencies.","PeriodicalId":8532,"journal":{"name":"Asian Journal of Probability and Statistics","volume":"51 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Probability and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/ajpas/2024/v26i4612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Diabetes Mellitus is a huge burden for human health, increasing number of patient is likely to result in rising demand for the medical emergencies. Due to limited number of hospitals with standard laboratory test kits to differentiate between type 1 and type 2 diabetes it is important to forecast the future incidences and prepare with proper resource planning. The monthly number of Diabetes patients obtained from Jos University Teaching Hospital is fitted by autoregressive integrated moving average (ARIMA) model. Dataset starting from January, 2010 to December,2020. Using ARIMA, several models were evaluated based on the Bayesian Information Criterion (BIC) and Ljung-Box Q statistics. ARIMA(3, 1, 1) is found to be better and used to describe and predict the future trends of Diabetes  type 1 and ARIMA(1,1,1) is a better model to predict the future prevalence of diabetes type 2. Therefore, the proposed model will help in the appropriate planning and allocation of resources for emergencies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测 1 型和 2 型糖尿病患者患病率的 Arima 模型:乔斯大学教学医院案例研究
糖尿病是人类健康的巨大负担,患者人数的增加可能导致医疗急救需求的上升。由于具备区分 1 型和 2 型糖尿病标准实验室检测试剂盒的医院数量有限,因此必须预测未来的发病率,并做好适当的资源规划。乔斯大学教学医院每月的糖尿病患者人数采用自回归综合移动平均(ARIMA)模型进行拟合。数据集从 2010 年 1 月至 2020 年 12 月。使用自回归整合移动平均模型,根据贝叶斯信息标准(BIC)和 Ljung-Box Q 统计量对几个模型进行了评估。结果发现,ARIMA(3, 1, 1) 更适合用于描述和预测 1 型糖尿病的未来趋势,而 ARIMA(1,1,1) 则是预测 2 型糖尿病未来患病率的较好模型。因此,建议的模型将有助于适当规划和分配应急资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bayesian Sequential Updation and Prediction of Currency in Circulation Using a Weighted Prior Assessment of Required Sample Sizes for Estimating Proportions Rainfall Pattern in Kenya: Bayesian Non-parametric Model Based on the Normalized Generalized Gamma Process Advancing Retail Predictions: Integrating Diverse Machine Learning Models for Accurate Walmart Sales Forecasting Common Fixed-Point Theorem for Expansive Mappings in Dualistic Partial Metric Spaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1