Enhancing Yarn Quality Wavelength Spectrogram Analysis: A Semi-Supervised Anomaly Detection Approach with Convolutional Autoencoder

Machines Pub Date : 2024-05-02 DOI:10.3390/machines12050309
Haoran Wang, Zhongze Han, Xiaoshuang Xiong, Xuewei Song, Chen Shen
{"title":"Enhancing Yarn Quality Wavelength Spectrogram Analysis: A Semi-Supervised Anomaly Detection Approach with Convolutional Autoencoder","authors":"Haoran Wang, Zhongze Han, Xiaoshuang Xiong, Xuewei Song, Chen Shen","doi":"10.3390/machines12050309","DOIUrl":null,"url":null,"abstract":"Abnormal detection plays a pivotal role in the routine maintenance of industrial equipment. Malfunctions or breakdowns in the drafting components of spinning equipment can lead to yarn defects, thereby compromising the overall quality of the production line. Fault diagnosis of spinning equipment entails the examination of component defects through Wavelet Spectrogram Analysis (WSA). Conventional detection techniques heavily rely on manual experience and lack generality. To address this limitation, this current study leverages machine learning technology to formulate a semi-supervised anomaly detection approach employing a convolutional autoencoder. This method trains deep neural networks with normal data and employs the reconstruction mode of a convolutional autoencoder in conjunction with Kernel Density Estimation (KDE) to determine the optimal threshold for anomaly detection. This facilitates the differentiation between normal and abnormal operational modes without the necessity for extensive labeled fault data. Experimental results from two sets of industrial data validate the robustness of the proposed methodology. In comparison to conventional Autoencoder and prevalent machine learning techniques, the proposed approach demonstrates superior performance across evaluation metrics such as Accuracy, Recall, Area Under the Curve (AUC), and F1-score, thereby affirming the feasibility of the suggested model.","PeriodicalId":509264,"journal":{"name":"Machines","volume":"16 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/machines12050309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abnormal detection plays a pivotal role in the routine maintenance of industrial equipment. Malfunctions or breakdowns in the drafting components of spinning equipment can lead to yarn defects, thereby compromising the overall quality of the production line. Fault diagnosis of spinning equipment entails the examination of component defects through Wavelet Spectrogram Analysis (WSA). Conventional detection techniques heavily rely on manual experience and lack generality. To address this limitation, this current study leverages machine learning technology to formulate a semi-supervised anomaly detection approach employing a convolutional autoencoder. This method trains deep neural networks with normal data and employs the reconstruction mode of a convolutional autoencoder in conjunction with Kernel Density Estimation (KDE) to determine the optimal threshold for anomaly detection. This facilitates the differentiation between normal and abnormal operational modes without the necessity for extensive labeled fault data. Experimental results from two sets of industrial data validate the robustness of the proposed methodology. In comparison to conventional Autoencoder and prevalent machine learning techniques, the proposed approach demonstrates superior performance across evaluation metrics such as Accuracy, Recall, Area Under the Curve (AUC), and F1-score, thereby affirming the feasibility of the suggested model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
增强纱线质量波长谱分析:使用卷积自动编码器的半监督异常检测方法
异常检测在工业设备的日常维护中起着举足轻重的作用。纺纱设备牵伸部件的故障或断裂会导致纱疵,从而影响生产线的整体质量。纺纱设备的故障诊断需要通过小波频谱分析 (WSA) 来检查部件缺陷。传统的检测技术严重依赖人工经验,缺乏通用性。为解决这一局限性,本研究利用机器学习技术制定了一种采用卷积自动编码器的半监督异常检测方法。该方法使用正常数据训练深度神经网络,并结合核密度估计(KDE)使用卷积自动编码器的重构模式来确定异常检测的最佳阈值。这有助于区分正常和异常运行模式,而无需大量标注故障数据。两组工业数据的实验结果验证了所提方法的稳健性。与传统的自动编码器和流行的机器学习技术相比,所提出的方法在准确率、召回率、曲线下面积(AUC)和 F1 分数等评价指标上都表现出卓越的性能,从而肯定了所建议模型的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Study on Micro-Pit Texture Parameter Optimization and Its Tribological Properties Determination of Energy Losses of the Crank Press Mechanism Brush Seal Performance with Ideal Gas Working Fluid under Static Rotor Condition The State of Health of Electrical Connectors Dual-Arm Obstacle Avoidance Motion Planning Based on Improved RRT Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1