Duy Nguyen Huu, Tung Vu Cong, P. Brețcan, A. Petrisor
{"title":"Assessing the relationship between landslide susceptibility and land cover change using machine learning","authors":"Duy Nguyen Huu, Tung Vu Cong, P. Brețcan, A. Petrisor","doi":"10.15625/2615-9783/20706","DOIUrl":null,"url":null,"abstract":"Landslides are natural disasters most frequent in the mountain region of Vietnam, producing critical damage to human lives and assets. Therefore, precisely identifying the landslide occurrence probability within the region is essential in supporting decision-makers or developers in establishing effective strategies for reducing the damage. This study is aimed at developing a methodology based on machine learning, namely Xgboost (XGB), lightGBM, K-Nearest Neighbors (KNN), and Bagging (BA) for assessing the connection of land cover change to landslide susceptibility in Da Lat City, Vietnam. 202 landslide locations and 13 potential drivers became input data for the model. Various statistical indices, namely the root mean square error (RMSE), the area under the curve (AUC), and mean absolute error (MAE), were used to evaluate the proposed models. Our findings indicate that the Xgboost model was better than other models, as shown by the AUC value of 0.94, followed by LightGBM (AUC=0.91), KNN (AUC=0.87), and Bagging (AUC=0.81). In addition, urban areas increased during 2017-2023 from 25 km² to 30 km² in very high landslide susceptibility areas. Our approach can be applied to test the other regions in Vietnam. Our findings might represent a necessary tool for land use planning strategies to reduce damage from natural disasters and landslides.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"7 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15625/2615-9783/20706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Landslides are natural disasters most frequent in the mountain region of Vietnam, producing critical damage to human lives and assets. Therefore, precisely identifying the landslide occurrence probability within the region is essential in supporting decision-makers or developers in establishing effective strategies for reducing the damage. This study is aimed at developing a methodology based on machine learning, namely Xgboost (XGB), lightGBM, K-Nearest Neighbors (KNN), and Bagging (BA) for assessing the connection of land cover change to landslide susceptibility in Da Lat City, Vietnam. 202 landslide locations and 13 potential drivers became input data for the model. Various statistical indices, namely the root mean square error (RMSE), the area under the curve (AUC), and mean absolute error (MAE), were used to evaluate the proposed models. Our findings indicate that the Xgboost model was better than other models, as shown by the AUC value of 0.94, followed by LightGBM (AUC=0.91), KNN (AUC=0.87), and Bagging (AUC=0.81). In addition, urban areas increased during 2017-2023 from 25 km² to 30 km² in very high landslide susceptibility areas. Our approach can be applied to test the other regions in Vietnam. Our findings might represent a necessary tool for land use planning strategies to reduce damage from natural disasters and landslides.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.