A novel model for the study of future maritime climate using artificial neural networks and Monte Carlo simulations under the context of climate change
{"title":"A novel model for the study of future maritime climate using artificial neural networks and Monte Carlo simulations under the context of climate change","authors":"Nerea Portillo Juan, Vicente Negro Valdecantos","doi":"10.1016/j.ocemod.2024.102384","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes a new model to study future coastal maritime climate under climate change context. This new model combines statistical analysis, Monte Carlo simulations and Artificial Neural Networks (ANNs). Statistical analysis and Monte Carlo simulations are used to extrapolate future wave climate under climate change context at a regional level and ANNs are used to propagate these projected sea states obtained in deep water to the coast. The use of ANNs allows for the utilization of large amounts of data at a very low computational cost, and the use of Monte Carlo simulations enables the generation of future climate change projections at a regional level. The combination of the two methodologies results in a very accurate (MSE of 0.02 m and 1 s) and computationally inexpensive hybrid model that allows projections of coastal maritime climate considering climate change. This new methodology has been validated and applied in the Western Mediterranean for the long-term regime and for extreme events, obtaining increases in extreme events up to 1.5 m in wave height and up to 1.8 s in wave period by 2050.</p></div>","PeriodicalId":19457,"journal":{"name":"Ocean Modelling","volume":"190 ","pages":"Article 102384"},"PeriodicalIF":3.1000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1463500324000714/pdfft?md5=57413f642e0872fede7ee58226b42d66&pid=1-s2.0-S1463500324000714-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Modelling","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1463500324000714","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a new model to study future coastal maritime climate under climate change context. This new model combines statistical analysis, Monte Carlo simulations and Artificial Neural Networks (ANNs). Statistical analysis and Monte Carlo simulations are used to extrapolate future wave climate under climate change context at a regional level and ANNs are used to propagate these projected sea states obtained in deep water to the coast. The use of ANNs allows for the utilization of large amounts of data at a very low computational cost, and the use of Monte Carlo simulations enables the generation of future climate change projections at a regional level. The combination of the two methodologies results in a very accurate (MSE of 0.02 m and 1 s) and computationally inexpensive hybrid model that allows projections of coastal maritime climate considering climate change. This new methodology has been validated and applied in the Western Mediterranean for the long-term regime and for extreme events, obtaining increases in extreme events up to 1.5 m in wave height and up to 1.8 s in wave period by 2050.
期刊介绍:
The main objective of Ocean Modelling is to provide rapid communication between those interested in ocean modelling, whether through direct observation, or through analytical, numerical or laboratory models, and including interactions between physical and biogeochemical or biological phenomena. Because of the intimate links between ocean and atmosphere, involvement of scientists interested in influences of either medium on the other is welcome. The journal has a wide scope and includes ocean-atmosphere interaction in various forms as well as pure ocean results. In addition to primary peer-reviewed papers, the journal provides review papers, preliminary communications, and discussions.