Estimation aboveground biomass in subtropical bamboo forests based on an interpretable machine learning framework

IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Environmental Modelling & Software Pub Date : 2024-05-10 DOI:10.1016/j.envsoft.2024.106071
Xuejian Li , Huaqiang Du , Fangjie Mao , Yanxin Xu , Zihao Huang , Jie Xuan , Yongxia Zhou , Mengchen Hu
{"title":"Estimation aboveground biomass in subtropical bamboo forests based on an interpretable machine learning framework","authors":"Xuejian Li ,&nbsp;Huaqiang Du ,&nbsp;Fangjie Mao ,&nbsp;Yanxin Xu ,&nbsp;Zihao Huang ,&nbsp;Jie Xuan ,&nbsp;Yongxia Zhou ,&nbsp;Mengchen Hu","doi":"10.1016/j.envsoft.2024.106071","DOIUrl":null,"url":null,"abstract":"<div><p>Forest biomass is an essential indicator of forest ecosystem carbon cycle and global climate change research, and traditional machine learning cannot explain the mechanism of feature variable impact on forest aboveground biomass (AGB). Therefore, we proposed an interpretable bamboo forest AGB prediction method based on Shaply Additive exPlanation (SHAP) and XGBoost model to explain the impact mechanism of feature variables on AGB. The bamboo forest AGB is estimated using the monthly and annual scale leaf area index (LAI), enhanced vegetation index (EVI), ratio vegetation index (RVI), precipitation (Pre), maximum temperature (Tmax), minimum temperature (Tmin) and solar radiation (Rad) data. The results showed that the method could be effectively predict AGB, and precipitation more important than temperature. The framework revealed the threshold effect, exceeded the threshold value, the impacts of LAI_Ann, EVI_Ann, and Pre_11 on AGB were stable. The SHAP interaction value between LAI_Ann and EVI_Ann decreased with increasing EVI_Ann and LAI_Ann. By contrast, when Pre_11 increased, the SHAP interaction value between LAI_Ann and Pre_11 increased with increasing LAI_Ann. The framework could also be easily implemented, providing an interpretable machine learning model of forest AGB.</p></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1364815224001324/pdfft?md5=ab46147be2322388548d568e47222815&pid=1-s2.0-S1364815224001324-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815224001324","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Forest biomass is an essential indicator of forest ecosystem carbon cycle and global climate change research, and traditional machine learning cannot explain the mechanism of feature variable impact on forest aboveground biomass (AGB). Therefore, we proposed an interpretable bamboo forest AGB prediction method based on Shaply Additive exPlanation (SHAP) and XGBoost model to explain the impact mechanism of feature variables on AGB. The bamboo forest AGB is estimated using the monthly and annual scale leaf area index (LAI), enhanced vegetation index (EVI), ratio vegetation index (RVI), precipitation (Pre), maximum temperature (Tmax), minimum temperature (Tmin) and solar radiation (Rad) data. The results showed that the method could be effectively predict AGB, and precipitation more important than temperature. The framework revealed the threshold effect, exceeded the threshold value, the impacts of LAI_Ann, EVI_Ann, and Pre_11 on AGB were stable. The SHAP interaction value between LAI_Ann and EVI_Ann decreased with increasing EVI_Ann and LAI_Ann. By contrast, when Pre_11 increased, the SHAP interaction value between LAI_Ann and Pre_11 increased with increasing LAI_Ann. The framework could also be easily implemented, providing an interpretable machine learning model of forest AGB.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于可解释的机器学习框架估算亚热带竹林的地上生物量
森林生物量是森林生态系统碳循环和全球气候变化研究的重要指标,传统的机器学习无法解释特征变量对森林地上生物量(AGB)的影响机制。因此,我们提出了一种基于Shaply Additive exPlanation(SHAP)和XGBoost模型的可解释竹林AGB预测方法,以解释特征变量对AGB的影响机制。利用月尺度和年尺度叶面积指数(LAI)、增强植被指数(EVI)、比值植被指数(RVI)、降水量(Pre)、最高气温(Tmax)、最低气温(Tmin)和太阳辐射(Rad)数据估算竹林AGB。结果表明,该方法能有效预测 AGB,且降水比温度更重要。该框架揭示了阈值效应,超过阈值后,LAI_Ann、EVI_Ann 和 Pre_11 对 AGB 的影响趋于稳定。LAI_Ann 与 EVI_Ann 之间的 SHAP 交互值随着 EVI_Ann 和 LAI_Ann 的增加而减小。相反,当 Pre_11 增加时,LAI_Ann 与 Pre_11 之间的 SHAP 交互作用值随着 LAI_Ann 的增加而增加。该框架也很容易实现,可为森林 AGB 提供可解释的机器学习模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
期刊最新文献
A coordination attention residual U-Net model for enhanced short and mid-term sea surface temperature prediction An R package to partition observation data used for model development and evaluation to achieve model generalizability Dynamics of real-time forecasting failure and recovery due to data gaps: A study using EnKF-based assimilation with the Lorenz model Identification of pedestrian submerged parts in urban flooding based on images and deep learning A conceptual data modeling framework with four levels of abstraction for environmental information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1