Parcel-Level Crop Classification in Plain Fragmented Regions Based on Multi-Source Remote Sensing Images

Qiao Zhang, Ziyi Luo, Yang Shen, Zhoufeng Wang
{"title":"Parcel-Level Crop Classification in Plain Fragmented Regions Based on Multi-Source Remote Sensing Images","authors":"Qiao Zhang, Ziyi Luo, Yang Shen, Zhoufeng Wang","doi":"10.14358/pers.23-00053r2","DOIUrl":null,"url":null,"abstract":"Accurately obtaining crop cultivation extent and estimating the cultivated area are significant for adjusting regional planting structure. This article proposes a parcel-level crop classification method using time-series, medium-resolution, remote sensing images and single-phase, high-spatial-resolution,\n remote sensing images. The deep learning semantic segmentation network feature pyramid network with squeeze-and-excitation network (FPN???SENet) and multi-scale segmentation were used to extract cultivated land parcels from Gaofen-2 imagery, while the pixel-level crop types were classified\n by using support vector machine algorithms from time-series Sentinel-2 images. Then, the parcel-level crop classification was obtained from the pixel-level crop types and land parcels.","PeriodicalId":211256,"journal":{"name":"Photogrammetric Engineering & Remote Sensing","volume":"2013 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photogrammetric Engineering & Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14358/pers.23-00053r2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurately obtaining crop cultivation extent and estimating the cultivated area are significant for adjusting regional planting structure. This article proposes a parcel-level crop classification method using time-series, medium-resolution, remote sensing images and single-phase, high-spatial-resolution, remote sensing images. The deep learning semantic segmentation network feature pyramid network with squeeze-and-excitation network (FPN???SENet) and multi-scale segmentation were used to extract cultivated land parcels from Gaofen-2 imagery, while the pixel-level crop types were classified by using support vector machine algorithms from time-series Sentinel-2 images. Then, the parcel-level crop classification was obtained from the pixel-level crop types and land parcels.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多源遥感图像的平原破碎地区地块级作物分类
准确获取作物种植范围和估算种植面积对于调整区域种植结构意义重大。本文提出了一种利用时间序列中分辨率遥感图像和单相高空间分辨率遥感图像进行地块级作物分类的方法。利用深度学习语义分割网络特征金字塔网络与挤压激发网络(FPN???SENet)和多尺度分割技术从高分二号影像中提取耕地地块,同时利用支持向量机算法从时间序列哨兵二号影像中对像素级作物类型进行分类。然后,从像素级作物类型和地块中获得地块级作物分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ReLAP-Net: Residual Learning and Attention Based Parallel Network for Hyperspectral and Multispectral Image Fusion Book Review ‐ Top 20 Essential Skills for ArcGIS Pro A Surface Water Extraction Method Integrating Spectral and Temporal Characteristics Assessing the Utility of Uncrewed Aerial System Photogrammetrically Derived Point Clouds for Land Cover Classification in the Alaska North Slope GIS Tips & Tricks ‐ USGS Adds 100K Topo Scale to OnDemand Map Products
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1