The Munich Procedure – Standardising linear regression documentation in p-XRF research

IF 1.3 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Software Impacts Pub Date : 2024-05-14 DOI:10.1016/j.simpa.2024.100660
Michaela Schauer , Frank Siegmund , Markus Helfert , Brandon Lee Drake
{"title":"The Munich Procedure – Standardising linear regression documentation in p-XRF research","authors":"Michaela Schauer ,&nbsp;Frank Siegmund ,&nbsp;Markus Helfert ,&nbsp;Brandon Lee Drake","doi":"10.1016/j.simpa.2024.100660","DOIUrl":null,"url":null,"abstract":"<div><p>The Munich Procedure, a protocol presented as R code and initially developed on the basis of archaeometric portable X-ray fluorescence (p-XRF) data, offers adaptability and standardisation to evaluate coefficient corrections. These corrections are derived from linear regressions calculated by comparing p-XRF values with laboratory chemical analyses of the same sample set. The versatility of this procedure allows collaboration and ensures consistent data structure. Not tied to specific instrumentation, this approach helps to universally improve the accuracy of p-XRF data, benefiting specialists in a variety of industries. By providing a common baseline for performance evaluation, it enables discussion across different applications.</p></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"21 ","pages":"Article 100660"},"PeriodicalIF":1.3000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665963824000484/pdfft?md5=29c4b19a13d58b415fbae2a6a4483d57&pid=1-s2.0-S2665963824000484-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Impacts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665963824000484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The Munich Procedure, a protocol presented as R code and initially developed on the basis of archaeometric portable X-ray fluorescence (p-XRF) data, offers adaptability and standardisation to evaluate coefficient corrections. These corrections are derived from linear regressions calculated by comparing p-XRF values with laboratory chemical analyses of the same sample set. The versatility of this procedure allows collaboration and ensures consistent data structure. Not tied to specific instrumentation, this approach helps to universally improve the accuracy of p-XRF data, benefiting specialists in a variety of industries. By providing a common baseline for performance evaluation, it enables discussion across different applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
慕尼黑程序--p-XRF 研究中线性回归文件的标准化
慕尼黑程序是一个以 R 代码形式呈现的协议,最初是在考古便携式 X 射线荧光(p-XRF)数据的基础上开发的,它为评估系数修正提供了适应性和标准化。这些修正值是通过比较 p-XRF 值和相同样本集的实验室化学分析值计算出的线性回归结果得出的。该程序的多功能性允许进行协作,并确保数据结构的一致性。这种方法与特定仪器无关,有助于普遍提高 p-XRF 数据的准确性,使各行各业的专家受益匪浅。通过为性能评估提供一个共同的基线,可以对不同的应用进行讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Software Impacts
Software Impacts Software
CiteScore
2.70
自引率
9.50%
发文量
0
审稿时长
16 days
期刊最新文献
KNNOR-Reg: A python package for oversampling in imbalanced regression pff-oc: A space–time phase-field fracture optimal control framework Synthetic dataset generation system for vehicle detection Multi-browser VE: Enhancing internet browsing experience through virtual reality DeepPack3D: A Python package for online 3D bin packing optimization by deep reinforcement learning and constructive heuristics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1