Samaneh Mohammadi , Ali Balador , Sima Sinaei , Francesco Flammini
{"title":"Balancing privacy and performance in federated learning: A systematic literature review on methods and metrics","authors":"Samaneh Mohammadi , Ali Balador , Sima Sinaei , Francesco Flammini","doi":"10.1016/j.jpdc.2024.104918","DOIUrl":null,"url":null,"abstract":"<div><p>Federated learning (FL) as a novel paradigm in Artificial Intelligence (AI), ensures enhanced privacy by eliminating data centralization and brings learning directly to the edge of the user's device. Nevertheless, new privacy issues have been raised particularly during training and the exchange of parameters between servers and clients. While several privacy-preserving FL solutions have been developed to mitigate potential breaches in FL architectures, their integration poses its own set of challenges. Incorporating these privacy-preserving mechanisms into FL at the edge computing level can increase both communication and computational overheads, which may, in turn, compromise data utility and learning performance metrics. This paper provides a systematic literature review on essential methods and metrics to support the most appropriate trade-offs between FL privacy and other performance-related application requirements such as accuracy, loss, convergence time, utility, communication, and computation overhead. We aim to provide an extensive overview of recent privacy-preserving mechanisms in FL used across various applications, placing a particular focus on quantitative privacy assessment approaches in FL and the necessity of achieving a balance between privacy and the other requirements of real-world FL applications. This review collects, classifies, and discusses relevant papers in a structured manner, emphasizing challenges, open issues, and promising research directions.</p></div>","PeriodicalId":54775,"journal":{"name":"Journal of Parallel and Distributed Computing","volume":"192 ","pages":"Article 104918"},"PeriodicalIF":3.4000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0743731524000820/pdfft?md5=2ee3078ecc6441a5efe38d3a7c047d80&pid=1-s2.0-S0743731524000820-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Parallel and Distributed Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0743731524000820","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Federated learning (FL) as a novel paradigm in Artificial Intelligence (AI), ensures enhanced privacy by eliminating data centralization and brings learning directly to the edge of the user's device. Nevertheless, new privacy issues have been raised particularly during training and the exchange of parameters between servers and clients. While several privacy-preserving FL solutions have been developed to mitigate potential breaches in FL architectures, their integration poses its own set of challenges. Incorporating these privacy-preserving mechanisms into FL at the edge computing level can increase both communication and computational overheads, which may, in turn, compromise data utility and learning performance metrics. This paper provides a systematic literature review on essential methods and metrics to support the most appropriate trade-offs between FL privacy and other performance-related application requirements such as accuracy, loss, convergence time, utility, communication, and computation overhead. We aim to provide an extensive overview of recent privacy-preserving mechanisms in FL used across various applications, placing a particular focus on quantitative privacy assessment approaches in FL and the necessity of achieving a balance between privacy and the other requirements of real-world FL applications. This review collects, classifies, and discusses relevant papers in a structured manner, emphasizing challenges, open issues, and promising research directions.
期刊介绍:
This international journal is directed to researchers, engineers, educators, managers, programmers, and users of computers who have particular interests in parallel processing and/or distributed computing.
The Journal of Parallel and Distributed Computing publishes original research papers and timely review articles on the theory, design, evaluation, and use of parallel and/or distributed computing systems. The journal also features special issues on these topics; again covering the full range from the design to the use of our targeted systems.