Evaluation of SMAP and CYGNSS Soil Moistures in Drought Prediction Using Multiple Linear Regression and GLDAS Product

Komi Edokossi, Shuanggen Jin, Andrés Calabia, Iñigo Molina, Usman Mazhar
{"title":"Evaluation of SMAP and CYGNSS Soil Moistures in Drought Prediction Using Multiple Linear Regression and GLDAS Product","authors":"Komi Edokossi, Shuanggen Jin, Andrés Calabia, Iñigo Molina, Usman Mazhar","doi":"10.14358/pers.23-00075r2","DOIUrl":null,"url":null,"abstract":"Drought is a devastating natural hazard and exerts profound effects on both the environment and society. Predicting drought occurrences is significant in aiding decision-making and implementing effective mitigation strategies. In regions characterized by limited data availability, such\n as Southern Africa, the use of satellite remote sensing data promises an excellent opportunity for achieving this predictive goal. In this article, we assess the effectiveness of Soil Moisture Active Passive (SMAP) and Cyclone Global Navigation Satellite System (CYGNSS) soil moisture data\n in predicting drought conditions using multiple linear regression???predicted data and Global Land Data Assimilation System (GLDAS) soil moisture data.","PeriodicalId":211256,"journal":{"name":"Photogrammetric Engineering & Remote Sensing","volume":"115 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photogrammetric Engineering & Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14358/pers.23-00075r2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Drought is a devastating natural hazard and exerts profound effects on both the environment and society. Predicting drought occurrences is significant in aiding decision-making and implementing effective mitigation strategies. In regions characterized by limited data availability, such as Southern Africa, the use of satellite remote sensing data promises an excellent opportunity for achieving this predictive goal. In this article, we assess the effectiveness of Soil Moisture Active Passive (SMAP) and Cyclone Global Navigation Satellite System (CYGNSS) soil moisture data in predicting drought conditions using multiple linear regression???predicted data and Global Land Data Assimilation System (GLDAS) soil moisture data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用多元线性回归和 GLDAS 产品评估 SMAP 和 CYGNSS 土壤湿度在干旱预测中的作用
干旱是一种毁灭性自然灾害,对环境和社会都有深远影响。预测干旱的发生对于帮助决策和实施有效的缓解战略具有重要意义。在南部非洲等数据可用性有限的地区,卫星遥感数据的使用为实现这一预测目标提供了绝佳机会。在本文中,我们利用多元线性回归预测数据和全球陆地数据同化系统(GLDAS)土壤水分数据,评估了土壤水分主动被动式(SMAP)和旋风全球导航卫星系统(CYGNSS)土壤水分数据在预测干旱状况方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ReLAP-Net: Residual Learning and Attention Based Parallel Network for Hyperspectral and Multispectral Image Fusion Book Review ‐ Top 20 Essential Skills for ArcGIS Pro A Surface Water Extraction Method Integrating Spectral and Temporal Characteristics Assessing the Utility of Uncrewed Aerial System Photogrammetrically Derived Point Clouds for Land Cover Classification in the Alaska North Slope GIS Tips & Tricks ‐ USGS Adds 100K Topo Scale to OnDemand Map Products
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1