Collision-free Tool Motion Planning for 5-Axis CNC Machining with Toroidal Cutters

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-05-11 DOI:10.1016/j.cad.2024.103725
Juan Zaragoza Chichell , Alena Rečková , Michal Bizzarri , Michael Bartoň
{"title":"Collision-free Tool Motion Planning for 5-Axis CNC Machining with Toroidal Cutters","authors":"Juan Zaragoza Chichell ,&nbsp;Alena Rečková ,&nbsp;Michal Bizzarri ,&nbsp;Michael Bartoň","doi":"10.1016/j.cad.2024.103725","DOIUrl":null,"url":null,"abstract":"<div><p>Collision detection is a crucial part of CNC machining, however, many state-of-the-art algorithms test collisions as a post-process, after the path-planning stage, or use conservative approaches that result in low machining accuracy in the neighborhood of the cutter’s contact paths. We propose a fast collision detection test that does not require a costly construction of the configuration space nor high-resolution sampling of the cutter’s axis and uses the information of the neighboring points to efficiently prune away points of the axis that cannot cause collisions. The proposed collision detection test is incorporated directly as a part of the tool motion-planning stage, enabling design of highly-accurate motions of a toroidal cutting tool along free-form geometries. We validate our algorithm on a variety of benchmark surfaces, showing that our results provide high-quality approximations with provably non-colliding motions.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010448524000526","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Collision detection is a crucial part of CNC machining, however, many state-of-the-art algorithms test collisions as a post-process, after the path-planning stage, or use conservative approaches that result in low machining accuracy in the neighborhood of the cutter’s contact paths. We propose a fast collision detection test that does not require a costly construction of the configuration space nor high-resolution sampling of the cutter’s axis and uses the information of the neighboring points to efficiently prune away points of the axis that cannot cause collisions. The proposed collision detection test is incorporated directly as a part of the tool motion-planning stage, enabling design of highly-accurate motions of a toroidal cutting tool along free-form geometries. We validate our algorithm on a variety of benchmark surfaces, showing that our results provide high-quality approximations with provably non-colliding motions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用环形铣刀进行 5 轴数控加工的无碰撞刀具运动规划
碰撞检测是数控加工的关键部分,然而,许多最先进的算法都是在路径规划阶段之后才进行碰撞检测,或者使用保守的方法,导致铣刀接触路径附近的加工精度较低。我们提出了一种快速碰撞检测方法,它既不需要花费大量成本构建配置空间,也不需要对铣刀轴线进行高分辨率采样,而是利用邻近点的信息有效地剪除轴线上不会造成碰撞的点。所提出的碰撞检测测试可直接作为刀具运动规划阶段的一部分,从而实现环形切削刀具沿自由形状几何体的高精度运动设计。我们在各种基准表面上验证了我们的算法,结果表明我们的算法提供了高质量的近似值,并证明不会发生碰撞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Vitamin B12: prevention of human beings from lethal diseases and its food application. Current status and obstacles of narrowing yield gaps of four major crops. Cold shock treatment alleviates pitting in sweet cherry fruit by enhancing antioxidant enzymes activity and regulating membrane lipid metabolism. Removal of proteins and lipids affects structure, in vitro digestion and physicochemical properties of rice flour modified by heat-moisture treatment. Investigating the impact of climate variables on the organic honey yield in Turkey using XGBoost machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1