Vasileios-Menelaos Koufopanos, Pantelis G. Nikolakopoulos
{"title":"Finite element simulation of iron losses for an Active Magnetic Bearing–Rotor system constructed of Hiperco laminations","authors":"Vasileios-Menelaos Koufopanos, Pantelis G. Nikolakopoulos","doi":"10.1016/j.simpat.2024.102956","DOIUrl":null,"url":null,"abstract":"<div><p>Iron losses appear in Active Magnetic Bearings (AMBs) mostly because of the rotor's movement, but also because of the fluctuation of the control current in the stator's coils. They can be divided into three categories: the hysteresis losses, the eddy current losses and the excess losses and while they depend significantly on the rotating speed and the magnetic flux density applied on the poles, the most contributing factor is the magnetic material used for the core. In this paper, a 2-D Finite Element Method transient model is used to simulate the rotational motion of the shaft inside the AMB and calculate the iron losses that occur due to the alternating magnetic flux inside the rotor, as well as the mechanical load capacity on the vertical direction of the AMB for each case. A simulation is carried out, at first, for a constant control current value and a speed range of 0–30,000 rpm, followed by a second one, for constant rotational speed and control current values 0–0.5 A. Geometry remains the same for all simulations. When it comes to the materials selected for the stator and the rotor, the cases of Hiperco 27, Hiperco 50 and Hiperco 50 HS laminations are tested. The iron losses of the three alloys are compared to the losses of 3 % silicon-iron. The results show that the three iron cobalt alloys have significantly lower losses than the silicon iron for the same AMB size and rotor's speeds. Hiperco 50 has the lowest loss among the three Hiperco alloys, while Hiperco 50 HS provides slightly higher mechanical load capacity under the same operating conditions.</p></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":"135 ","pages":"Article 102956"},"PeriodicalIF":3.5000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simulation Modelling Practice and Theory","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569190X24000704","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Iron losses appear in Active Magnetic Bearings (AMBs) mostly because of the rotor's movement, but also because of the fluctuation of the control current in the stator's coils. They can be divided into three categories: the hysteresis losses, the eddy current losses and the excess losses and while they depend significantly on the rotating speed and the magnetic flux density applied on the poles, the most contributing factor is the magnetic material used for the core. In this paper, a 2-D Finite Element Method transient model is used to simulate the rotational motion of the shaft inside the AMB and calculate the iron losses that occur due to the alternating magnetic flux inside the rotor, as well as the mechanical load capacity on the vertical direction of the AMB for each case. A simulation is carried out, at first, for a constant control current value and a speed range of 0–30,000 rpm, followed by a second one, for constant rotational speed and control current values 0–0.5 A. Geometry remains the same for all simulations. When it comes to the materials selected for the stator and the rotor, the cases of Hiperco 27, Hiperco 50 and Hiperco 50 HS laminations are tested. The iron losses of the three alloys are compared to the losses of 3 % silicon-iron. The results show that the three iron cobalt alloys have significantly lower losses than the silicon iron for the same AMB size and rotor's speeds. Hiperco 50 has the lowest loss among the three Hiperco alloys, while Hiperco 50 HS provides slightly higher mechanical load capacity under the same operating conditions.
期刊介绍:
The journal Simulation Modelling Practice and Theory provides a forum for original, high-quality papers dealing with any aspect of systems simulation and modelling.
The journal aims at being a reference and a powerful tool to all those professionally active and/or interested in the methods and applications of simulation. Submitted papers will be peer reviewed and must significantly contribute to modelling and simulation in general or use modelling and simulation in application areas.
Paper submission is solicited on:
• theoretical aspects of modelling and simulation including formal modelling, model-checking, random number generators, sensitivity analysis, variance reduction techniques, experimental design, meta-modelling, methods and algorithms for validation and verification, selection and comparison procedures etc.;
• methodology and application of modelling and simulation in any area, including computer systems, networks, real-time and embedded systems, mobile and intelligent agents, manufacturing and transportation systems, management, engineering, biomedical engineering, economics, ecology and environment, education, transaction handling, etc.;
• simulation languages and environments including those, specific to distributed computing, grid computing, high performance computers or computer networks, etc.;
• distributed and real-time simulation, simulation interoperability;
• tools for high performance computing simulation, including dedicated architectures and parallel computing.