Influence of chemical composition and discontinuities on energy transformation and rock mass behaviour: Insights into geological dynamic

Naeem Abbas, Kegang Li, Yewuhalashet Fissha, Zemicael Gebrehiwot, Hajime Ikeda, Mujahid Ali, Hisatoshi Toriya, Tsuyoshi Adachi, Youhei Kawamura
{"title":"Influence of chemical composition and discontinuities on energy transformation and rock mass behaviour: Insights into geological dynamic","authors":"Naeem Abbas, Kegang Li, Yewuhalashet Fissha, Zemicael Gebrehiwot, Hajime Ikeda, Mujahid Ali, Hisatoshi Toriya, Tsuyoshi Adachi, Youhei Kawamura","doi":"10.1049/tje2.12388","DOIUrl":null,"url":null,"abstract":"In this study, efforts were made to incorporate the influence of discontinuities and failure modes of rock into the classification of rock masses. The past tectonic activities may create microfractures in the rock body therefore the failure moods have been determined carefully under uniaxial compression. The results of the discontinuity analysis, conducted through kinematic study, highlighted the significant impact of wedge failure on the failure of the rock mass. In correlating the geological strength index with rock mass rating, it was observed that joint volume played a negative role, whereas compressive strength played a positive role. These correlations are particularly applicable for a certain rock type, as the compressive strength is inherently dependent on the type of rock. The analysis of failure modes under uniaxial compression reveals that the dissipation energy coefficient initially undergoes rapid increase before reaching its minimum value at the failure stage. The microstructures of the rock effect significantly the elastic and dissipation energy characteristics. Specifically, the axial splitting failure mode emerges as predominant. Given the area's past tectonic activity, these results emphasize the impact of microfractures within the rock body. Relating the failure criteria with the chemical composition of rock types reveals that rocks abundant in SiO2, such as gabbronorite, tend to exhibit brittle failure. Additionally, a dominance of Al2O3 over Fe2O3 suggests a predisposition towards brittle failure, while an increased ratio of CaO to MgO implies increased susceptibility to compression.","PeriodicalId":510109,"journal":{"name":"The Journal of Engineering","volume":"50 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/tje2.12388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, efforts were made to incorporate the influence of discontinuities and failure modes of rock into the classification of rock masses. The past tectonic activities may create microfractures in the rock body therefore the failure moods have been determined carefully under uniaxial compression. The results of the discontinuity analysis, conducted through kinematic study, highlighted the significant impact of wedge failure on the failure of the rock mass. In correlating the geological strength index with rock mass rating, it was observed that joint volume played a negative role, whereas compressive strength played a positive role. These correlations are particularly applicable for a certain rock type, as the compressive strength is inherently dependent on the type of rock. The analysis of failure modes under uniaxial compression reveals that the dissipation energy coefficient initially undergoes rapid increase before reaching its minimum value at the failure stage. The microstructures of the rock effect significantly the elastic and dissipation energy characteristics. Specifically, the axial splitting failure mode emerges as predominant. Given the area's past tectonic activity, these results emphasize the impact of microfractures within the rock body. Relating the failure criteria with the chemical composition of rock types reveals that rocks abundant in SiO2, such as gabbronorite, tend to exhibit brittle failure. Additionally, a dominance of Al2O3 over Fe2O3 suggests a predisposition towards brittle failure, while an increased ratio of CaO to MgO implies increased susceptibility to compression.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
化学成分和不连续性对能量转化和岩体行为的影响:洞察地质动态
在这项研究中,我们努力将不连续性和岩石破坏模式的影响纳入岩体分类中。过去的构造活动可能会在岩体中产生微裂缝,因此在单轴压缩条件下仔细确定了破坏模式。通过运动学研究进行的不连续性分析结果表明,楔形破坏对岩体破坏具有重要影响。在将地质强度指数与岩体等级相关联时,发现节理体积起负作用,而抗压强度起正作用。这些相关性尤其适用于某种岩石类型,因为抗压强度本质上取决于岩石类型。对单轴压缩下破坏模式的分析表明,耗散能量系数最初会迅速增加,然后在破坏阶段达到最小值。岩石的微观结构对弹性和耗能特性有显著影响。具体而言,轴向劈裂破坏模式占主导地位。鉴于该地区过去的构造活动,这些结果强调了岩体内部微裂缝的影响。将破坏标准与岩石类型的化学成分联系起来可以发现,二氧化硅含量丰富的岩石(如辉绿岩)倾向于表现出脆性破坏。此外,Al2O3 多于 Fe2O3 表明岩石易发生脆性破坏,而 CaO 与 MgO 的比率增加则意味着岩石更易受到挤压。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ferrofluid‐based electrical machines: Conceptualization and experimental evaluation Anti‐leakage transmission method of high privacy information in electric power communication network based on digital watermarking technology A high‐accuracy and robust diagnostic tool for gearbox faults in wind turbines Optimal scheduling of the stand‐alone micro grids considering the reliability cost A domain adaptation‐based convolutional neural network incorporating data augmentation for power system dynamic security assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1