Functional quantile autoregression

IF 9.9 3区 经济学 Q1 ECONOMICS Journal of Econometrics Pub Date : 2024-09-01 DOI:10.1016/j.jeconom.2024.105765
Chaohua Dong , Rong Chen , Zhijie Xiao , Weiyi Liu
{"title":"Functional quantile autoregression","authors":"Chaohua Dong ,&nbsp;Rong Chen ,&nbsp;Zhijie Xiao ,&nbsp;Weiyi Liu","doi":"10.1016/j.jeconom.2024.105765","DOIUrl":null,"url":null,"abstract":"<div><div><span>This paper proposes a new class of time series models, the functional </span>quantile<span> autoregression (FQAR) models, in which the conditional distribution of the observation at the current time point is affected by its past distributional information, and is expressed as a functional of the past conditional quantile functions. Different from the conventional functional time series models which are based on functionally observed data, the proposed FQAR method studies functional dynamics in traditional time series data. We propose a sieve estimator for the model. Asymptotic properties of the estimators are derived. Numerical investigations are conducted to highlight the proposed method.</span></div></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"244 2","pages":"Article 105765"},"PeriodicalIF":9.9000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407624001118","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a new class of time series models, the functional quantile autoregression (FQAR) models, in which the conditional distribution of the observation at the current time point is affected by its past distributional information, and is expressed as a functional of the past conditional quantile functions. Different from the conventional functional time series models which are based on functionally observed data, the proposed FQAR method studies functional dynamics in traditional time series data. We propose a sieve estimator for the model. Asymptotic properties of the estimators are derived. Numerical investigations are conducted to highlight the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
功能量子自回归
本文提出了一类新的时间序列模型--函数量子自回归(FQAR)模型,其中观测值在当前时间点的条件分布受其过去分布信息的影响,并表示为过去条件量子函数的函数。与基于函数观测数据的传统函数时间序列模型不同,所提出的 FQAR 方法研究的是传统时间序列数据中的函数动态。我们提出了该模型的筛子估计器。得出了估计器的渐近特性。我们还进行了数值研究,以突出所提议的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Econometrics
Journal of Econometrics 社会科学-数学跨学科应用
CiteScore
8.60
自引率
1.60%
发文量
220
审稿时长
3-8 weeks
期刊介绍: The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.
期刊最新文献
GLS under monotone heteroskedasticity Multivariate spatiotemporal models with low rank coefficient matrix Estimating and testing for smooth structural changes in moment condition models Validating approximate slope homogeneity in large panels Pseudo-variance quasi-maximum likelihood estimation of semi-parametric time series models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1