{"title":"The Subseasonal Feedback of Extreme Anomalous Tibetan Plateau Snow Cover Events on the Atmosphere","authors":"Yumeng Liu, Wenkai Li","doi":"10.1175/mwr-d-23-0175.1","DOIUrl":null,"url":null,"abstract":"\nTibetan Plateau snow cover exhibits notable subseasonal variability and plays a crucial role in influencing the atmosphere. This study employs numerical experiments to investigate the atmospheric feedback resulting from extreme anomalous snow cover events on the Tibetan Plateau, with a focus on both local and nonlocal atmospheric temperatures. The findings reveal that diabatic heating, directly induced by these events, leads to a local surface energy cooling response over the Tibetan Plateau, contributing to a reduction in local temperatures. This cooling effect amplifies local atmospheric temperature anomalies associated with extreme anomalous Tibetan Plateau snow cover events, constituting approximately 50% of the total final local surface air temperature anomalies. Furthermore, the Tibetan Plateau snow cover, through adiabatic processes, exerts a nonlocal influence on atmospheric temperature and circulation. The atmospheric temperature responses downstream of the Tibetan Plateau vary at different heights and regions, featuring both cold and warm anomaly responses. These variations depend on the relative contributions of horizontal advection and vertical advection in adiabatic heating.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"1 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/mwr-d-23-0175.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Tibetan Plateau snow cover exhibits notable subseasonal variability and plays a crucial role in influencing the atmosphere. This study employs numerical experiments to investigate the atmospheric feedback resulting from extreme anomalous snow cover events on the Tibetan Plateau, with a focus on both local and nonlocal atmospheric temperatures. The findings reveal that diabatic heating, directly induced by these events, leads to a local surface energy cooling response over the Tibetan Plateau, contributing to a reduction in local temperatures. This cooling effect amplifies local atmospheric temperature anomalies associated with extreme anomalous Tibetan Plateau snow cover events, constituting approximately 50% of the total final local surface air temperature anomalies. Furthermore, the Tibetan Plateau snow cover, through adiabatic processes, exerts a nonlocal influence on atmospheric temperature and circulation. The atmospheric temperature responses downstream of the Tibetan Plateau vary at different heights and regions, featuring both cold and warm anomaly responses. These variations depend on the relative contributions of horizontal advection and vertical advection in adiabatic heating.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.