{"title":"Theory of elastic wave propagation in a fluid-saturated multi-porous medium with multi-permeability","authors":"Dipendu Pramanik, S. Manna, Andrea Nobili","doi":"10.1098/rspa.2023.0863","DOIUrl":null,"url":null,"abstract":"\n This paper establishes the concept of elastic wave propagation in a multi-porous medium with different permeabilities by assuming there are\n \n \n n\n \n \n distinct pore fluid phases. The dynamic equation of motion of elastic wave propagation through this multi-porous medium is derived based on Lagrangian mechanics. In this regard, the generalized form of mass coefficients and then the energy loss due to the fluid phases in terms of dissipation coefficients are presented for low-frequency limits with the help of Darcy’s Law of multi-phases system. The elastic coefficients of the constitutive equation in terms of compliance matrix are identified using a series of Gedanken experiments. Some significant results regarding the compressional and rotational waves in a multi-porosity medium are derived. The validation of the theory has been shown by comparing it with the existing theory of single and double porosity. It is observed that there are\n \n \n (\n n\n +\n 1\n )\n \n \n compressional waves corresponding to solid and fluid phases, whereas only one rotational wave is associated with the solid phase. The concept of multi-porosity theory can contribute to a deeper understanding of wave behaviour in a porous medium.\n","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"10 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rspa.2023.0863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper establishes the concept of elastic wave propagation in a multi-porous medium with different permeabilities by assuming there are
n
distinct pore fluid phases. The dynamic equation of motion of elastic wave propagation through this multi-porous medium is derived based on Lagrangian mechanics. In this regard, the generalized form of mass coefficients and then the energy loss due to the fluid phases in terms of dissipation coefficients are presented for low-frequency limits with the help of Darcy’s Law of multi-phases system. The elastic coefficients of the constitutive equation in terms of compliance matrix are identified using a series of Gedanken experiments. Some significant results regarding the compressional and rotational waves in a multi-porosity medium are derived. The validation of the theory has been shown by comparing it with the existing theory of single and double porosity. It is observed that there are
(
n
+
1
)
compressional waves corresponding to solid and fluid phases, whereas only one rotational wave is associated with the solid phase. The concept of multi-porosity theory can contribute to a deeper understanding of wave behaviour in a porous medium.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.