Area selective deposition for bottom-up atomic-scale manufacturing

IF 14 1区 工程技术 Q1 ENGINEERING, MANUFACTURING International Journal of Machine Tools & Manufacture Pub Date : 2024-05-09 DOI:10.1016/j.ijmachtools.2024.104173
Rong Chen, Eryan Gu, Kun Cao, Jingming Zhang
{"title":"Area selective deposition for bottom-up atomic-scale manufacturing","authors":"Rong Chen,&nbsp;Eryan Gu,&nbsp;Kun Cao,&nbsp;Jingming Zhang","doi":"10.1016/j.ijmachtools.2024.104173","DOIUrl":null,"url":null,"abstract":"<div><p>Area selective deposition, which streamlines fabrication steps by enhancing precision and reliability, represents a cutting-edge, bottom-up atomic and close-to-atomic scale manufacturing processing. This perspective delves into the essence of area selective atomic layer deposition, exploring the critical mechanisms and additional strategies that enhance the effectiveness of area selective deposition processes. A pivotal emphasis is placed on the thermodynamic and kinetic principles driving nucleation and film growth, coupled with a thorough examination of these underlying processes. Several assisted techniques aiming at improving selectivity and enlarging the selective process window, including surface passivation, activation, deactivation, and defect elimination have been summarized. The introduction of a comprehensive area selective deposition nucleation model illuminates the complex dynamics of area selective deposition, laying a theoretical groundwork for refining deposition processes. The technical and scientific challenges associated with area selective deposition, along with the prospects for its future development and industrial application, form a key part of this perspective. By enabling atomic-level accuracy, area selective deposition paves the way for the fabrication of complex nanostructures, promising significant advancements across the semiconductor industry and a broad spectrum of technological applications, unlocking unparalleled possibilities in precision manufacturing, setting the stage for breakthroughs that will redefine the landscape of modern technology.</p></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"199 ","pages":"Article 104173"},"PeriodicalIF":14.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Machine Tools & Manufacture","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890695524000592","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Area selective deposition, which streamlines fabrication steps by enhancing precision and reliability, represents a cutting-edge, bottom-up atomic and close-to-atomic scale manufacturing processing. This perspective delves into the essence of area selective atomic layer deposition, exploring the critical mechanisms and additional strategies that enhance the effectiveness of area selective deposition processes. A pivotal emphasis is placed on the thermodynamic and kinetic principles driving nucleation and film growth, coupled with a thorough examination of these underlying processes. Several assisted techniques aiming at improving selectivity and enlarging the selective process window, including surface passivation, activation, deactivation, and defect elimination have been summarized. The introduction of a comprehensive area selective deposition nucleation model illuminates the complex dynamics of area selective deposition, laying a theoretical groundwork for refining deposition processes. The technical and scientific challenges associated with area selective deposition, along with the prospects for its future development and industrial application, form a key part of this perspective. By enabling atomic-level accuracy, area selective deposition paves the way for the fabrication of complex nanostructures, promising significant advancements across the semiconductor industry and a broad spectrum of technological applications, unlocking unparalleled possibilities in precision manufacturing, setting the stage for breakthroughs that will redefine the landscape of modern technology.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于自下而上原子级制造的区域选择性沉积技术
区域选择性沉积通过提高精度和可靠性来简化制造步骤,是一种尖端的、自下而上的原子级和近原子级制造工艺。本视角深入探讨了区域选择性原子层沉积的本质,探索了提高区域选择性沉积工艺有效性的关键机制和其他策略。重点强调了驱动成核和薄膜生长的热力学和动力学原理,并对这些基本过程进行了深入研究。书中总结了几种旨在提高选择性和扩大选择性工艺窗口的辅助技术,包括表面钝化、活化、失活和缺陷消除。全面的区域选择性沉积成核模型的引入阐明了区域选择性沉积的复杂动态,为完善沉积工艺奠定了理论基础。与区域选择性沉积相关的技术和科学挑战,以及其未来发展和工业应用前景,构成了这一视角的关键部分。通过实现原子级精度,区域选择性沉积为制造复杂的纳米结构铺平了道路,有望在整个半导体行业和广泛的技术应用领域取得重大进展,为精密制造带来无与伦比的可能性,为重新定义现代技术领域的突破奠定基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
25.70
自引率
10.00%
发文量
66
审稿时长
18 days
期刊介绍: The International Journal of Machine Tools and Manufacture is dedicated to advancing scientific comprehension of the fundamental mechanics involved in processes and machines utilized in the manufacturing of engineering components. While the primary focus is on metals, the journal also explores applications in composites, ceramics, and other structural or functional materials. The coverage includes a diverse range of topics: - Essential mechanics of processes involving material removal, accretion, and deformation, encompassing solid, semi-solid, or particulate forms. - Significant scientific advancements in existing or new processes and machines. - In-depth characterization of workpiece materials (structure/surfaces) through advanced techniques (e.g., SEM, EDS, TEM, EBSD, AES, Raman spectroscopy) to unveil new phenomenological aspects governing manufacturing processes. - Tool design, utilization, and comprehensive studies of failure mechanisms. - Innovative concepts of machine tools, fixtures, and tool holders supported by modeling and demonstrations relevant to manufacturing processes within the journal's scope. - Novel scientific contributions exploring interactions between the machine tool, control system, software design, and processes. - Studies elucidating specific mechanisms governing niche processes (e.g., ultra-high precision, nano/atomic level manufacturing with either mechanical or non-mechanical "tools"). - Innovative approaches, underpinned by thorough scientific analysis, addressing emerging or breakthrough processes (e.g., bio-inspired manufacturing) and/or applications (e.g., ultra-high precision optics).
期刊最新文献
Editorial Board Combining in situ synchrotron X-ray imaging and multiphysics simulation to reveal pore formation dynamics in laser welding of copper A distinctive material removal mechanism in the diamond grinding of (0001)-oriented single crystal gallium nitride and its implications in substrate manufacturing of brittle materials Strengthening flat-die friction self-pierce riveting joints via manipulating stir zone geometry by tailored rivet structures A novel method of induction electrode through-mask electrochemical micromachining
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1