Muneeba Muneeba, Abdul Khaliq, Faran Muhammad, Muhammad Dilawaz Khan, S. Alharbi, Mohamad Javed Ansari, Muhammad Umer, Muhammad Talha Aslam, Haroon Shahzad
{"title":"Mitigating the Toxic Effects of Salinity in Wheat Though Exogenous Application of Moringa Leaf Extract","authors":"Muneeba Muneeba, Abdul Khaliq, Faran Muhammad, Muhammad Dilawaz Khan, S. Alharbi, Mohamad Javed Ansari, Muhammad Umer, Muhammad Talha Aslam, Haroon Shahzad","doi":"10.12911/22998993/186503","DOIUrl":null,"url":null,"abstract":"Allelochemicals have emerged as an important player in inducing the abiotic stress tolerance. The experiment included three components: different levels of salinity stress (SS: control, 6 dS m -1 , 12 dS m -1 ), seed priming with moringa leaf extract (MLE: 0.5%, 1.0%, 1.5%, 2.0%, 2.5%, 3.0%), and saltwater-tolerant and salinity-sensitive wheat cultivars (Faisalabad-2008, Galaxy-2013). Results showed that salinity lowered photosynthetic pigments, photosynthesis, transpiration, internal carbon, and stomatal conductance while causing poor and delayed germination, inconsistent seedling growth, and increased hydrogen peroxide accumulation. However, hydro-priming and MLE priming enhanced emergence dynamics, growth, biochemical and enzymatic characteristics, and physiological aspects. The cultivar Faisalabad-2008 (wheat) performed well, but at high salinity levels, the hormetic impact of moringa leaf extract was more obvious, enhancing the germination and growth of cultivar Galaxy-2013, which was salinity-sensitive. Wheat cultivars’ germination and seedling growth improved most when primed with 2% MLE (Faisalabad-2008) and 2.5% MLE (Galaxy-2013). This demonstrated that moringa possesses growth-promoting compounds that efficiently mitigate the toxic impacts of salinity.","PeriodicalId":15652,"journal":{"name":"Journal of Ecological Engineering","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ecological Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12911/22998993/186503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Allelochemicals have emerged as an important player in inducing the abiotic stress tolerance. The experiment included three components: different levels of salinity stress (SS: control, 6 dS m -1 , 12 dS m -1 ), seed priming with moringa leaf extract (MLE: 0.5%, 1.0%, 1.5%, 2.0%, 2.5%, 3.0%), and saltwater-tolerant and salinity-sensitive wheat cultivars (Faisalabad-2008, Galaxy-2013). Results showed that salinity lowered photosynthetic pigments, photosynthesis, transpiration, internal carbon, and stomatal conductance while causing poor and delayed germination, inconsistent seedling growth, and increased hydrogen peroxide accumulation. However, hydro-priming and MLE priming enhanced emergence dynamics, growth, biochemical and enzymatic characteristics, and physiological aspects. The cultivar Faisalabad-2008 (wheat) performed well, but at high salinity levels, the hormetic impact of moringa leaf extract was more obvious, enhancing the germination and growth of cultivar Galaxy-2013, which was salinity-sensitive. Wheat cultivars’ germination and seedling growth improved most when primed with 2% MLE (Faisalabad-2008) and 2.5% MLE (Galaxy-2013). This demonstrated that moringa possesses growth-promoting compounds that efficiently mitigate the toxic impacts of salinity.
期刊介绍:
- Industrial and municipal waste management - Pro-ecological technologies and products - Energy-saving technologies - Environmental landscaping - Environmental monitoring - Climate change in the environment - Sustainable development - Processing and usage of mineral resources - Recovery of valuable materials and fuels - Surface water and groundwater management - Water and wastewater treatment - Smog and air pollution prevention - Protection and reclamation of soils - Reclamation and revitalization of degraded areas - Heavy metals in the environment - Renewable energy technologies - Environmental protection of rural areas - Restoration and protection of urban environment - Prevention of noise in the environment - Environmental life-cycle assessment (LCA) - Simulations and computer modeling for the environment