URANS Simulation of Self-Recirculation Casing Treatment in a Transonic Compressor

IF 17.7 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-05-01 DOI:10.47176/jafm.17.05.2121
M. Shahriyari, †. H.Khaleghi
{"title":"URANS Simulation of Self-Recirculation Casing Treatment in a Transonic Compressor","authors":"M. Shahriyari, †. H.Khaleghi","doi":"10.47176/jafm.17.05.2121","DOIUrl":null,"url":null,"abstract":"Time-accurate numerical calculations are performed to investigate the effect of air recirculation on NASA Rotor 37. An annular casing-mounted recirculation passageway is designed and located over the blades. Because the investigated rotor does not have any stator, the bleed air has a high circumferential velocity component (in the same direction of the rotor). Therefore, the injected air would have a high swirl component, reducing the injection's effectiveness. As a result, anti-swirl blades have been installed within the recirculation duct, to reduce flow swirl and improve injector effectiveness. Different anti-swirl vanes have been simulated in order to determine the best vanes in terms of minimum pressure loss and zero injection yaw angle (axial injection). Results show that these vanes can effectively turn the circulated fluid to the axial direction and provide a high velocity axial injection upstream of the rotor blades. As a result of the effective injection, the leakage flow moves downstream, improving stability by shifting the stalling point to lower mass flow rates. Because the injection port is close to the blade, the interaction of the passage shock and the injection port causes unsteadiness in the injection mass flow, which is discussed in the paper.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"54 19","pages":""},"PeriodicalIF":17.7000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.47176/jafm.17.05.2121","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Time-accurate numerical calculations are performed to investigate the effect of air recirculation on NASA Rotor 37. An annular casing-mounted recirculation passageway is designed and located over the blades. Because the investigated rotor does not have any stator, the bleed air has a high circumferential velocity component (in the same direction of the rotor). Therefore, the injected air would have a high swirl component, reducing the injection's effectiveness. As a result, anti-swirl blades have been installed within the recirculation duct, to reduce flow swirl and improve injector effectiveness. Different anti-swirl vanes have been simulated in order to determine the best vanes in terms of minimum pressure loss and zero injection yaw angle (axial injection). Results show that these vanes can effectively turn the circulated fluid to the axial direction and provide a high velocity axial injection upstream of the rotor blades. As a result of the effective injection, the leakage flow moves downstream, improving stability by shifting the stalling point to lower mass flow rates. Because the injection port is close to the blade, the interaction of the passage shock and the injection port causes unsteadiness in the injection mass flow, which is discussed in the paper.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
跨音速压缩机中自循环套管处理的 URANS 仿真
为研究空气再循环对 NASA 37 号转子的影响,进行了精确的时间数值计算。设计了一个安装在叶片上方的环形套管再循环通道。由于所研究的转子没有定子,排出的空气具有较高的圆周速度分量(与转子方向相同)。因此,注入的空气会有较高的漩涡分量,从而降低喷射效果。因此,在再循环管道内安装了防漩涡叶片,以减少气流漩涡,提高喷射效果。对不同的防漩涡叶片进行了模拟,以确定压力损失最小、喷射偏航角为零(轴向喷射)的最佳叶片。结果表明,这些叶片能有效地将循环流体转向轴向,并在转子叶片上游提供高速轴向喷射。有效喷射的结果是,泄漏流向下游移动,通过将停滞点转移到较低的质量流量来提高稳定性。由于喷射口靠近叶片,通道冲击和喷射口的相互作用会导致喷射质量流的不稳定性,本文对此进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Ordering Covalent–Organic Frameworks toward Next-Generation Nanofiltration Molecular-Level Decoding of Electron Transfer Dynamics in Metal Nanoclusters Ultraconformal Carbon-Based Biointerfacing Electrodes for Cognition Study. Theoretical Insights on the Regulatory Mechanisms of Structure and Doping on the Photoluminescence of Ligand Protected Gold Nanoclusters Aluminylenes: Synthesis, Reactivity, and Catalysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1