Investigation of Distribution Characteristics of Cylindrical Particles after the Rupture of Modular Cartridges in a Simulator Chamber

IF 1.1 4区 工程技术 Q4 MECHANICS Journal of Applied Fluid Mechanics Pub Date : 2024-05-01 DOI:10.47176/jafm.17.05.2270
Z. Y. Li, †. Y.G.Yu, A. Chen
{"title":"Investigation of Distribution Characteristics of Cylindrical Particles after the Rupture of Modular Cartridges in a Simulator Chamber","authors":"Z. Y. Li, †. Y.G.Yu, A. Chen","doi":"10.47176/jafm.17.05.2270","DOIUrl":null,"url":null,"abstract":"Modular charging is an advanced technique designed to meet the requirements of auto-loading artillery, whereby granular propellants are stored within modular cartridges that are loaded into the gun chamber. This study employed an extended coupled computational fluid dynamics-discrete element method (CFD-DEM) approach to investigate the gas-particle flow within modular charges. After model validation, we analyzed the distribution characteristics, velocity, coordination number, and orientation of cylindrical pellets in a simulator chamber. Four different loading positions for modular cartridges were examined to assess their impact on particle distribution. Numerical simulations revealed a combination of gentle, horizontal, and steep slopes in the particle distribution. The maximum particle velocity experienced a rapid increase during the initial phase, followed by a zigzag decline after reaching its peak. High-coordination number particles tended to accumulate primarily in the middle layer of steep accumulation. Additionally, the particles exhibited an inverted V-shape orientation range from 0° to 180°, suggesting their tendency to assume upright positions. This established model significantly enhanced our understanding of particle distribution following module cartridge rupture and provided valuable guidance for optimizing the design of large-caliber artillery charges.","PeriodicalId":49041,"journal":{"name":"Journal of Applied Fluid Mechanics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.47176/jafm.17.05.2270","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Modular charging is an advanced technique designed to meet the requirements of auto-loading artillery, whereby granular propellants are stored within modular cartridges that are loaded into the gun chamber. This study employed an extended coupled computational fluid dynamics-discrete element method (CFD-DEM) approach to investigate the gas-particle flow within modular charges. After model validation, we analyzed the distribution characteristics, velocity, coordination number, and orientation of cylindrical pellets in a simulator chamber. Four different loading positions for modular cartridges were examined to assess their impact on particle distribution. Numerical simulations revealed a combination of gentle, horizontal, and steep slopes in the particle distribution. The maximum particle velocity experienced a rapid increase during the initial phase, followed by a zigzag decline after reaching its peak. High-coordination number particles tended to accumulate primarily in the middle layer of steep accumulation. Additionally, the particles exhibited an inverted V-shape orientation range from 0° to 180°, suggesting their tendency to assume upright positions. This established model significantly enhanced our understanding of particle distribution following module cartridge rupture and provided valuable guidance for optimizing the design of large-caliber artillery charges.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模块化弹壳破裂后圆柱形颗粒在模拟舱中的分布特征研究
模块化装药是为满足自动装填火炮的要求而设计的一种先进技术,它将颗粒状推进剂储存在模块化弹药筒内,然后装入炮膛。本研究采用了一种扩展的计算流体动力学-离散元法(CFD-DEM)耦合方法来研究模块化装药内的气体-颗粒流动。经过模型验证后,我们分析了圆柱形弹丸在模拟室内的分布特征、速度、配位数和方向。我们研究了模块化装药的四个不同装药位置,以评估它们对颗粒分布的影响。数值模拟显示,颗粒分布中既有平缓的斜坡,也有水平的斜坡,还有陡峭的斜坡。颗粒的最大速度在初始阶段迅速增加,达到峰值后呈之字形下降。高配位数粒子往往主要聚集在陡峭聚集的中间层。此外,颗粒呈现出从 0° 到 180° 的倒 V 形取向范围,表明它们倾向于采取直立姿势。这一已建立的模型极大地增强了我们对模块弹破裂后颗粒分布的理解,并为优化大口径火炮装药的设计提供了宝贵的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Applied Fluid Mechanics
Journal of Applied Fluid Mechanics THERMODYNAMICS-MECHANICS
CiteScore
2.00
自引率
20.00%
发文量
138
审稿时长
>12 weeks
期刊介绍: The Journal of Applied Fluid Mechanics (JAFM) is an international, peer-reviewed journal which covers a wide range of theoretical, numerical and experimental aspects in fluid mechanics. The emphasis is on the applications in different engineering fields rather than on pure mathematical or physical aspects in fluid mechanics. Although many high quality journals pertaining to different aspects of fluid mechanics presently exist, research in the field is rapidly escalating. The motivation for this new fluid mechanics journal is driven by the following points: (1) there is a need to have an e-journal accessible to all fluid mechanics researchers, (2) scientists from third- world countries need a venue that does not incur publication costs, (3) quality papers deserve rapid and fast publication through an efficient peer review process, and (4) an outlet is needed for rapid dissemination of fluid mechanics conferences held in Asian countries. Pertaining to this latter point, there presently exist some excellent conferences devoted to the promotion of fluid mechanics in the region such as the Asian Congress of Fluid Mechanics which began in 1980 and nominally takes place in one of the Asian countries every two years. We hope that the proposed journal provides and additional impetus for promoting applied fluids research and associated activities in this continent. The journal is under the umbrella of the Physics Society of Iran with the collaboration of Isfahan University of Technology (IUT) .
期刊最新文献
Experimental and LES Studies of Propane–air Premixed Gases in Pipelines Containing Mixed Obstacles Influence of a Modified Weir Profile on Velocity Field and Dissipation Rate in Stepped Spillways: A Comparative Study Using Physical Models and Computational Fluid Dynamics Numerical Analysis of Mechanism on Heat Transfer Deterioration of Hexamethyldisiloxane in a Vertical Upward Tube at Supercritical Pressures Numerical Simulation Study of the Effect of Outlet on the Axial Vortex Separator Numerical Study on the Influence of Plasma Actuation on the Cavitation Characteristics of Hydrofoil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1