Learning complex predicates for cardinality estimation using recursive neural networks

IF 3 2区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Information Systems Pub Date : 2024-05-08 DOI:10.1016/j.is.2024.102402
Zhi Wang , Hancong Duan , Yamin Cheng , Geyong Min
{"title":"Learning complex predicates for cardinality estimation using recursive neural networks","authors":"Zhi Wang ,&nbsp;Hancong Duan ,&nbsp;Yamin Cheng ,&nbsp;Geyong Min","doi":"10.1016/j.is.2024.102402","DOIUrl":null,"url":null,"abstract":"<div><p>Cardinality estimation is one of the most vital components in the query optimizer, which has been extensively studied recently. On one hand, traditional cardinality estimators, such as histograms and sampling methods, struggle to capture the correlations between multiple tables. On the other hand, current learning-based methods still suffer from the feature extraction of complex predicates and join relations, which will lead to inaccurate cost estimation, eventually a sub-optimal execution plan. To address these challenges, we present a novel end-to-end architecture leveraging deep learning to provide high-quality cardinality estimation. We exploit an effective feature extraction technique, which can fully make use of the structure of tables, join conditions and predicates. Besides, we use sampling-based technique to construct sample bitmaps for the tables and join conditions respectively. We also utilize the characteristics of predicate tree combined with recursive neural network to extract deep-level features of complex predicates. Finally, we embed these feature vectors into the model, which consists of three components: a recursive neural network, a graph convolutional neural network (GCN) and a multi-set convolutional neural network, to obtain the estimated cardinality. Extensive results conducted on real-world workloads demonstrate that our approach can achieve significant improvement in accuracy and be extended to queries with complex semantics.</p></div>","PeriodicalId":50363,"journal":{"name":"Information Systems","volume":"124 ","pages":"Article 102402"},"PeriodicalIF":3.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306437924000607","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Cardinality estimation is one of the most vital components in the query optimizer, which has been extensively studied recently. On one hand, traditional cardinality estimators, such as histograms and sampling methods, struggle to capture the correlations between multiple tables. On the other hand, current learning-based methods still suffer from the feature extraction of complex predicates and join relations, which will lead to inaccurate cost estimation, eventually a sub-optimal execution plan. To address these challenges, we present a novel end-to-end architecture leveraging deep learning to provide high-quality cardinality estimation. We exploit an effective feature extraction technique, which can fully make use of the structure of tables, join conditions and predicates. Besides, we use sampling-based technique to construct sample bitmaps for the tables and join conditions respectively. We also utilize the characteristics of predicate tree combined with recursive neural network to extract deep-level features of complex predicates. Finally, we embed these feature vectors into the model, which consists of three components: a recursive neural network, a graph convolutional neural network (GCN) and a multi-set convolutional neural network, to obtain the estimated cardinality. Extensive results conducted on real-world workloads demonstrate that our approach can achieve significant improvement in accuracy and be extended to queries with complex semantics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用递归神经网络学习复杂谓词以进行卡方估计
卡片性估计是查询优化器中最重要的组成部分之一,近来已得到广泛研究。一方面,直方图和抽样方法等传统的卡片性估计方法难以捕捉到多个表之间的相关性。另一方面,当前基于学习的方法仍然存在复杂谓词和连接关系的特征提取问题,这将导致成本估计不准确,最终产生次优执行计划。为了应对这些挑战,我们提出了一种新颖的端到端架构,利用深度学习来提供高质量的万有引力估计。我们利用有效的特征提取技术,可以充分利用表的结构、连接条件和谓词。此外,我们还使用基于采样的技术,分别为表和连接条件构建样本位图。我们还利用谓词树的特点,结合递归神经网络,提取复杂谓词的深层次特征。最后,我们将这些特征向量嵌入到由递归神经网络、图卷积神经网络(GCN)和多集卷积神经网络三部分组成的模型中,以获得估计的卡入度。在实际工作负载中取得的大量结果表明,我们的方法可以显著提高准确性,并可扩展到具有复杂语义的查询。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Information Systems
Information Systems 工程技术-计算机:信息系统
CiteScore
9.40
自引率
2.70%
发文量
112
审稿时长
53 days
期刊介绍: Information systems are the software and hardware systems that support data-intensive applications. The journal Information Systems publishes articles concerning the design and implementation of languages, data models, process models, algorithms, software and hardware for information systems. Subject areas include data management issues as presented in the principal international database conferences (e.g., ACM SIGMOD/PODS, VLDB, ICDE and ICDT/EDBT) as well as data-related issues from the fields of data mining/machine learning, information retrieval coordinated with structured data, internet and cloud data management, business process management, web semantics, visual and audio information systems, scientific computing, and data science. Implementation papers having to do with massively parallel data management, fault tolerance in practice, and special purpose hardware for data-intensive systems are also welcome. Manuscripts from application domains, such as urban informatics, social and natural science, and Internet of Things, are also welcome. All papers should highlight innovative solutions to data management problems such as new data models, performance enhancements, and show how those innovations contribute to the goals of the application.
期刊最新文献
Two-level massive string dictionaries A generative and discriminative model for diversity-promoting recommendation Soundness unknotted: An efficient soundness checking algorithm for arbitrary cyclic process models by loosening loops The composition diagram of a complex process: Enhancing understanding of hierarchical business processes Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1