Temperature dependences of thermal conductivity of solid heterogeneous crystalline and amorphous materials: An empirical approach to the description in the high-temperature region

Pub Date : 2024-05-01 DOI:10.1063/10.0025621
Y. Horbatenko, V. Sagan, O. A. Korolyuk, O. O. Romantsova, A. Krivchikov
{"title":"Temperature dependences of thermal conductivity of solid heterogeneous crystalline and amorphous materials: An empirical approach to the description in the high-temperature region","authors":"Y. Horbatenko, V. Sagan, O. A. Korolyuk, O. O. Romantsova, A. Krivchikov","doi":"10.1063/10.0025621","DOIUrl":null,"url":null,"abstract":"This paper presents a detailed analysis of the thermal conductivity behaviors exhibited by a diverse array of nanostructured materials, ranging from multilayer graphene nanocomposites to semiconductor-based nanostructures such as Bi0.5Sb1.5Te3 and In0.53Ga0.47As composites. The investigation extends to superlattices, nanowires, and hybrid nanostructures, encompassing materials like hexagonal boron nitride flakes, iron oxide nanoporous films, and organic-inorganic hybrid materials. The thermal conductivity of these materials is characterized by distinct trends, with some showcasing crystal-like behavior and others demonstrating glass-like characteristics. The analysis employs empirical expressions to discern the contributions of phonons and diffusons in crystal-like materials and incorporates Peierls contributions and Arrhenius-type terms for glass-like behavior. Noteworthy observations include deviations in fitting certain materials at lower temperatures and the identification of negative diffuson contributions in specific cases. These findings contribute to a nuanced understanding of thermal transport in nanostructured materials and have implications for applications in advanced thermal management systems and thermoelectric devices. The extracted parameters provide valuable insights for researchers exploring the thermal conductivity of diverse nanostructured materials.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/10.0025621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a detailed analysis of the thermal conductivity behaviors exhibited by a diverse array of nanostructured materials, ranging from multilayer graphene nanocomposites to semiconductor-based nanostructures such as Bi0.5Sb1.5Te3 and In0.53Ga0.47As composites. The investigation extends to superlattices, nanowires, and hybrid nanostructures, encompassing materials like hexagonal boron nitride flakes, iron oxide nanoporous films, and organic-inorganic hybrid materials. The thermal conductivity of these materials is characterized by distinct trends, with some showcasing crystal-like behavior and others demonstrating glass-like characteristics. The analysis employs empirical expressions to discern the contributions of phonons and diffusons in crystal-like materials and incorporates Peierls contributions and Arrhenius-type terms for glass-like behavior. Noteworthy observations include deviations in fitting certain materials at lower temperatures and the identification of negative diffuson contributions in specific cases. These findings contribute to a nuanced understanding of thermal transport in nanostructured materials and have implications for applications in advanced thermal management systems and thermoelectric devices. The extracted parameters provide valuable insights for researchers exploring the thermal conductivity of diverse nanostructured materials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
固态异质结晶和非晶材料热导率的温度依赖性:描述高温区的经验方法
本文详细分析了从多层石墨烯纳米复合材料到基于半导体的纳米结构(如 Bi0.5Sb1.5Te3 和 In0.53Ga0.47As 复合材料)等各种纳米结构材料所表现出的热传导行为。研究范围扩展到超晶格、纳米线和混合纳米结构,包括六方氮化硼薄片、氧化铁纳米多孔薄膜和有机-无机混合材料等材料。这些材料的导热性有明显的变化趋势,有些表现出类似晶体的行为,有些则表现出类似玻璃的特性。分析采用了经验表达式来辨别类晶体材料中声子和扩散子的贡献,并将 Peierls 贡献和 Arrhenius 类项纳入类玻璃行为。值得注意的观察结果包括某些材料在较低温度下的拟合偏差,以及在特定情况下的负扩散子贡献。这些发现有助于深入理解纳米结构材料中的热传输,并对先进热管理系统和热电设备的应用产生影响。提取的参数为研究人员探索各种纳米结构材料的热传导性提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1