{"title":"Resolving data imbalance in alkaline battery defect detection: a voting-based deep learning approach","authors":"Zhenying Xu, Bangguo Han, Liling Han, Yucheng Tao, Yun Wang, Ying-Jun Lei","doi":"10.1784/insi.2024.66.5.305","DOIUrl":null,"url":null,"abstract":"Alkaline battery defect detection is crucial for ensuring product quality and providing diagnostic feedback. Recently, high-performance deep learning algorithms have been introduced to recognise defects in alkaline batteries. However, the majority of deep learning-based methods overlook\n the significant data imbalance issues in alkaline battery electrode images, potentially resulting in performance degradation. Therefore, a voting-based recognition algorithm containing three parts is proposed in this study. Firstly, a resampling and training method is developed to provide\n richer information and stronger constraints. Secondly, a weak classification framework based on an improved convolutional neural network (CNN) is designed to provide fine-grained category representations. Finally, a voting-based prediction approach is proposed to improve accuracy and obtain\n the final results. Visualisation results demonstrate that the proposed algorithm has a stronger clustering ability and uses voting-based prediction to improve performance. Comparison research shows that the proposed method significantly improves the recall of minority classes and the precision\n of majority classes and reaches a state-of-the-art F1 score of 0.982 for alkaline battery defect recognition, which is 0.041 higher than the basic CNN model.","PeriodicalId":506650,"journal":{"name":"Insight - Non-Destructive Testing and Condition Monitoring","volume":"48 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insight - Non-Destructive Testing and Condition Monitoring","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1784/insi.2024.66.5.305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Alkaline battery defect detection is crucial for ensuring product quality and providing diagnostic feedback. Recently, high-performance deep learning algorithms have been introduced to recognise defects in alkaline batteries. However, the majority of deep learning-based methods overlook
the significant data imbalance issues in alkaline battery electrode images, potentially resulting in performance degradation. Therefore, a voting-based recognition algorithm containing three parts is proposed in this study. Firstly, a resampling and training method is developed to provide
richer information and stronger constraints. Secondly, a weak classification framework based on an improved convolutional neural network (CNN) is designed to provide fine-grained category representations. Finally, a voting-based prediction approach is proposed to improve accuracy and obtain
the final results. Visualisation results demonstrate that the proposed algorithm has a stronger clustering ability and uses voting-based prediction to improve performance. Comparison research shows that the proposed method significantly improves the recall of minority classes and the precision
of majority classes and reaches a state-of-the-art F1 score of 0.982 for alkaline battery defect recognition, which is 0.041 higher than the basic CNN model.