Automated Python workflow for generating Sentinel-1 PSI and SBAS interferometric stacks using SNAP on Geospatial Computing Platform

IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Environmental Modelling & Software Pub Date : 2024-05-14 DOI:10.1016/j.envsoft.2024.106075
Amira Zaki , Ling Chang , Irene Manzella , Mark van der Meijde , Serkan Girgin , Hakan Tanyas , Islam Fadel
{"title":"Automated Python workflow for generating Sentinel-1 PSI and SBAS interferometric stacks using SNAP on Geospatial Computing Platform","authors":"Amira Zaki ,&nbsp;Ling Chang ,&nbsp;Irene Manzella ,&nbsp;Mark van der Meijde ,&nbsp;Serkan Girgin ,&nbsp;Hakan Tanyas ,&nbsp;Islam Fadel","doi":"10.1016/j.envsoft.2024.106075","DOIUrl":null,"url":null,"abstract":"<div><p>Detecting and monitoring surface deformation using radar satellite data is vital in geohazard assessment. Sentinel-1 has provided unprecedented spatial and temporal resolution, but data processing is complicated and poses computational challenges. Although software and tools exist, each with its own limitations. SNAP-ESA is notable for its user-friendly interface and stable performance in Interferometric Synthetic Aperture Radar (InSAR). However, SNAP-ESA lacks a flexible approach for generating interferometric time series stacks for Persistent Scatterer Interferometry (PSI) and Small Baseline Subset (SBAS) techniques and faces computational challenges over large areas. Here, we present an automated Python workflow, SNAPWF, using SNAP-ESA to enable efficient PSI and SBAS interferometric time series stacks generation using flexible network graphs. SNAPWF has been implemented on a dedicated geospatial computing platform, enabling efficient performance over large areas. Results confirm its ability to generate PSI and SBAS interferometric stacks using full Sentinel-1 scenes and achieve results comparable to existing software.</p></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1364815224001361/pdfft?md5=f7fe0b3deabd74bccb47d4a3564ffa8d&pid=1-s2.0-S1364815224001361-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815224001361","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Detecting and monitoring surface deformation using radar satellite data is vital in geohazard assessment. Sentinel-1 has provided unprecedented spatial and temporal resolution, but data processing is complicated and poses computational challenges. Although software and tools exist, each with its own limitations. SNAP-ESA is notable for its user-friendly interface and stable performance in Interferometric Synthetic Aperture Radar (InSAR). However, SNAP-ESA lacks a flexible approach for generating interferometric time series stacks for Persistent Scatterer Interferometry (PSI) and Small Baseline Subset (SBAS) techniques and faces computational challenges over large areas. Here, we present an automated Python workflow, SNAPWF, using SNAP-ESA to enable efficient PSI and SBAS interferometric time series stacks generation using flexible network graphs. SNAPWF has been implemented on a dedicated geospatial computing platform, enabling efficient performance over large areas. Results confirm its ability to generate PSI and SBAS interferometric stacks using full Sentinel-1 scenes and achieve results comparable to existing software.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在地理空间计算平台上使用 SNAP 生成哨兵-1 PSI 和 SBAS 干涉测量堆栈的 Python 自动工作流程
利用雷达卫星数据探测和监测地表变形对地质灾害评估至关重要。哨兵 1 号提供了前所未有的空间和时间分辨率,但数据处理十分复杂,给计算带来了挑战。虽然有软件和工具,但每种软件和工具都有自己的局限性。SNAP-ESA 以其友好的用户界面和稳定的干涉合成孔径雷达 (InSAR) 性能而著称。然而,SNAP-ESA 在为持久散射体干涉测量(PSI)和小基线子集(SBAS)技术生成干涉时间序列堆栈方面缺乏灵活的方法,并且在大面积区域面临计算挑战。在此,我们介绍一种使用 SNAP-ESA 的 Python 自动工作流程 SNAPWF,以便使用灵活的网络图高效生成 PSI 和 SBAS 干涉时间序列堆栈。SNAPWF 是在专用地理空间计算平台上实现的,可在大面积范围内高效运行。结果证实,它能够利用完整的哨兵-1 号场景生成 PSI 和 SBAS 干涉测量堆栈,并取得与现有软件相当的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
期刊最新文献
A coordination attention residual U-Net model for enhanced short and mid-term sea surface temperature prediction An R package to partition observation data used for model development and evaluation to achieve model generalizability Dynamics of real-time forecasting failure and recovery due to data gaps: A study using EnKF-based assimilation with the Lorenz model Identification of pedestrian submerged parts in urban flooding based on images and deep learning A conceptual data modeling framework with four levels of abstraction for environmental information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1