Amira Zaki , Ling Chang , Irene Manzella , Mark van der Meijde , Serkan Girgin , Hakan Tanyas , Islam Fadel
{"title":"Automated Python workflow for generating Sentinel-1 PSI and SBAS interferometric stacks using SNAP on Geospatial Computing Platform","authors":"Amira Zaki , Ling Chang , Irene Manzella , Mark van der Meijde , Serkan Girgin , Hakan Tanyas , Islam Fadel","doi":"10.1016/j.envsoft.2024.106075","DOIUrl":null,"url":null,"abstract":"<div><p>Detecting and monitoring surface deformation using radar satellite data is vital in geohazard assessment. Sentinel-1 has provided unprecedented spatial and temporal resolution, but data processing is complicated and poses computational challenges. Although software and tools exist, each with its own limitations. SNAP-ESA is notable for its user-friendly interface and stable performance in Interferometric Synthetic Aperture Radar (InSAR). However, SNAP-ESA lacks a flexible approach for generating interferometric time series stacks for Persistent Scatterer Interferometry (PSI) and Small Baseline Subset (SBAS) techniques and faces computational challenges over large areas. Here, we present an automated Python workflow, SNAPWF, using SNAP-ESA to enable efficient PSI and SBAS interferometric time series stacks generation using flexible network graphs. SNAPWF has been implemented on a dedicated geospatial computing platform, enabling efficient performance over large areas. Results confirm its ability to generate PSI and SBAS interferometric stacks using full Sentinel-1 scenes and achieve results comparable to existing software.</p></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1364815224001361/pdfft?md5=f7fe0b3deabd74bccb47d4a3564ffa8d&pid=1-s2.0-S1364815224001361-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815224001361","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Detecting and monitoring surface deformation using radar satellite data is vital in geohazard assessment. Sentinel-1 has provided unprecedented spatial and temporal resolution, but data processing is complicated and poses computational challenges. Although software and tools exist, each with its own limitations. SNAP-ESA is notable for its user-friendly interface and stable performance in Interferometric Synthetic Aperture Radar (InSAR). However, SNAP-ESA lacks a flexible approach for generating interferometric time series stacks for Persistent Scatterer Interferometry (PSI) and Small Baseline Subset (SBAS) techniques and faces computational challenges over large areas. Here, we present an automated Python workflow, SNAPWF, using SNAP-ESA to enable efficient PSI and SBAS interferometric time series stacks generation using flexible network graphs. SNAPWF has been implemented on a dedicated geospatial computing platform, enabling efficient performance over large areas. Results confirm its ability to generate PSI and SBAS interferometric stacks using full Sentinel-1 scenes and achieve results comparable to existing software.
期刊介绍:
Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.