{"title":"On the union of homogeneous symmetric Cantor set with its translations","authors":"Derong Kong, Wenxia Li, Zhiqiang Wang, Yuanyuan Yao, Yunxiu Zhang","doi":"10.1007/s00209-024-03499-4","DOIUrl":null,"url":null,"abstract":"<p>Fix a positive integer <i>N</i> and a real number <span>\\(0< \\beta < 1/(N+1)\\)</span>. Let <span>\\(\\Gamma \\)</span> be the homogeneous symmetric Cantor set generated by the IFS </p><span>$$\\begin{aligned} \\Bigg \\{ \\phi _i(x)=\\beta x + i \\frac{1-\\beta }{N}: i=0,1,\\ldots , N \\Bigg \\}. \\end{aligned}$$</span><p>For <span>\\(m\\in \\mathbb {Z}_+\\)</span> we show that there exist infinitely many translation vectors <span>\\({\\textbf{t}}=(t_0,t_1,\\ldots , t_m)\\)</span> with <span>\\(0=t_0<t_1<\\cdots <t_m\\)</span> such that the union <span>\\(\\bigcup _{j=0}^m(\\Gamma +t_j)\\)</span> is a self-similar set. Furthermore, for <span>\\(0< \\beta < 1/(2N+1)\\)</span>, we give a finite algorithm to determine whether the union <span>\\(\\bigcup _{j=0}^m(\\Gamma +t_j)\\)</span> is a self-similar set for any given vector <span>\\({\\textbf{t}}\\)</span>. Our characterization relies on determining whether some related directed graph has no cycles, or whether some related adjacency matrix is nilpotent.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"54 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03499-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Fix a positive integer N and a real number \(0< \beta < 1/(N+1)\). Let \(\Gamma \) be the homogeneous symmetric Cantor set generated by the IFS
$$\begin{aligned} \Bigg \{ \phi _i(x)=\beta x + i \frac{1-\beta }{N}: i=0,1,\ldots , N \Bigg \}. \end{aligned}$$
For \(m\in \mathbb {Z}_+\) we show that there exist infinitely many translation vectors \({\textbf{t}}=(t_0,t_1,\ldots , t_m)\) with \(0=t_0<t_1<\cdots <t_m\) such that the union \(\bigcup _{j=0}^m(\Gamma +t_j)\) is a self-similar set. Furthermore, for \(0< \beta < 1/(2N+1)\), we give a finite algorithm to determine whether the union \(\bigcup _{j=0}^m(\Gamma +t_j)\) is a self-similar set for any given vector \({\textbf{t}}\). Our characterization relies on determining whether some related directed graph has no cycles, or whether some related adjacency matrix is nilpotent.