Yi Chen, Xiaoming Ye, Xiaobi Wang, Menghua Duan, Pei Deng, Ling Qing
{"title":"Optimization of automotive aerodynamic performance based on DOE","authors":"Yi Chen, Xiaoming Ye, Xiaobi Wang, Menghua Duan, Pei Deng, Ling Qing","doi":"10.1177/09544070241248902","DOIUrl":null,"url":null,"abstract":"Based on a new-energy sedan as the research object, the Design of Experiments (DOE) optimization integrated grid deformation method was used to optimize and improve the aerodynamic performance of a certain development model. A three-dimensional flow field comparison analysis was conducted on the improved areas of the whole vehicle flow field, and wind tunnel tests were conducted for verification. Through CFD simulation and wind tunnel test verification, the accuracy of the CFD simulation method was verified. The engineering feasible DOE optimization recommended area for the whole vehicle was summarized. The optimal prediction results based on the DOE optimization method and the corresponding CFD simulation results were analyzed for reliability. The correlation between the optimization variables and the target function was analyzed, and 6 counts reduced the whole vehicle drag coefficient by adjusting the optimization variables within a small range. Finally, wind tunnel tests were used to verify the effectiveness of the optimized variable scheme. The results provide an important reference for the optimization design and development of vehicle aerodynamic performance.","PeriodicalId":54568,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part D-Journal of Automobile Engineering","volume":"128 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part D-Journal of Automobile Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544070241248902","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Based on a new-energy sedan as the research object, the Design of Experiments (DOE) optimization integrated grid deformation method was used to optimize and improve the aerodynamic performance of a certain development model. A three-dimensional flow field comparison analysis was conducted on the improved areas of the whole vehicle flow field, and wind tunnel tests were conducted for verification. Through CFD simulation and wind tunnel test verification, the accuracy of the CFD simulation method was verified. The engineering feasible DOE optimization recommended area for the whole vehicle was summarized. The optimal prediction results based on the DOE optimization method and the corresponding CFD simulation results were analyzed for reliability. The correlation between the optimization variables and the target function was analyzed, and 6 counts reduced the whole vehicle drag coefficient by adjusting the optimization variables within a small range. Finally, wind tunnel tests were used to verify the effectiveness of the optimized variable scheme. The results provide an important reference for the optimization design and development of vehicle aerodynamic performance.
期刊介绍:
The Journal of Automobile Engineering is an established, high quality multi-disciplinary journal which publishes the very best peer-reviewed science and engineering in the field.