Linear Resources in Isabelle/HOL

IF 0.9 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Automated Reasoning Pub Date : 2024-05-18 DOI:10.1007/s10817-024-09698-2
Filip Smola, Jacques D. Fleuriot
{"title":"Linear Resources in Isabelle/HOL","authors":"Filip Smola, Jacques D. Fleuriot","doi":"10.1007/s10817-024-09698-2","DOIUrl":null,"url":null,"abstract":"<p>We present a formal framework for process composition based on actions that are specified by their input and output resources. The correctness of these compositions is verified by translating them into deductions in intuitionistic linear logic. As part of the verification we derive simple conditions on the compositions which ensure well-formedness of the corresponding deduction when satisfied. We mechanise the whole framework, including a deep embedding of ILL, in the proof assistant Isabelle/HOL. Beyond the increased confidence in our proofs, this allows us to automatically generate executable code for our verified definitions. We demonstrate our approach by formalising part of the simulation game Factorio and modelling a manufacturing process in it. Our framework guarantees that this model is free of bottlenecks.</p>","PeriodicalId":15082,"journal":{"name":"Journal of Automated Reasoning","volume":"11978 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Automated Reasoning","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10817-024-09698-2","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

We present a formal framework for process composition based on actions that are specified by their input and output resources. The correctness of these compositions is verified by translating them into deductions in intuitionistic linear logic. As part of the verification we derive simple conditions on the compositions which ensure well-formedness of the corresponding deduction when satisfied. We mechanise the whole framework, including a deep embedding of ILL, in the proof assistant Isabelle/HOL. Beyond the increased confidence in our proofs, this allows us to automatically generate executable code for our verified definitions. We demonstrate our approach by formalising part of the simulation game Factorio and modelling a manufacturing process in it. Our framework guarantees that this model is free of bottlenecks.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Isabelle/HOL 中的线性资源
我们提出了一种基于由输入和输出资源指定的行动的流程组合形式框架。这些组合的正确性可通过将其转化为直觉线性逻辑中的推导来验证。作为验证的一部分,我们推导出了流程组合的简单条件,这些条件一旦满足,就能确保相应的推导具有良好的形式。我们将整个框架机械化,包括在证明助手 Isabelle/HOL 中对 ILL 进行深度嵌入。这不仅增强了我们对证明的信心,还使我们能够为经过验证的定义自动生成可执行代码。我们通过形式化模拟游戏 Factorio 的部分内容并在其中建立制造流程模型来演示我们的方法。我们的框架保证了该模型不存在瓶颈。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Automated Reasoning
Journal of Automated Reasoning 工程技术-计算机:人工智能
CiteScore
3.60
自引率
9.10%
发文量
31
审稿时长
>12 weeks
期刊介绍: The Journal of Automated Reasoning is an interdisciplinary journal that maintains a balance between theory, implementation and application. The spectrum of material published ranges from the presentation of a new inference rule with proof of its logical properties to a detailed account of a computer program designed to solve various problems in industry. The main fields covered are automated theorem proving, logic programming, expert systems, program synthesis and validation, artificial intelligence, computational logic, robotics, and various industrial applications. The papers share the common feature of focusing on several aspects of automated reasoning, a field whose objective is the design and implementation of a computer program that serves as an assistant in solving problems and in answering questions that require reasoning. The Journal of Automated Reasoning provides a forum and a means for exchanging information for those interested purely in theory, those interested primarily in implementation, and those interested in specific research and industrial applications.
期刊最新文献
Single-Set Cubical Categories and Their Formalisation with a Proof Assistant Towards a Scalable Proof Engine: A Performant Prototype Rewriting Primitive for Coq Verifying the Generalization of Deep Learning to Out-of-Distribution Domains Dependency Schemes in CDCL-Based QBF Solving: A Proof-Theoretic Study Verifying a Sequent Calculus Prover for First-Order Logic with Functions in Isabelle/HOL
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1