Unbiased evaluation of ranking algorithms applied to the Chinese green patents citation network

IF 3.5 3区 管理学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Scientometrics Pub Date : 2024-05-18 DOI:10.1007/s11192-024-05023-1
Xipeng Liu, Xinmiao Li
{"title":"Unbiased evaluation of ranking algorithms applied to the Chinese green patents citation network","authors":"Xipeng Liu, Xinmiao Li","doi":"10.1007/s11192-024-05023-1","DOIUrl":null,"url":null,"abstract":"<p>As a phased achievement of technological innovation, patent analysis holds extraordinary research significance. By constructing patent citation networks, scholars have proposed various centrality algorithms (such as citation count, PageRank, LeaderRank, etc.) for evaluating the quality and influence of patents. However, these centrality algorithms suffer from age bias, which means these algorithms are more inclined to obtain higher rankings for older patents, thus losing fairness to younger patents. Additionally, the selection of algorithm performance evaluation indicators is crucial. If the indicators are not chosen appropriately, the results may be affected. Therefore, based on the background of Chinese green patents, this paper develops an unbiased evaluation ranking algorithm to identify significant Chinese green patents earlier. The results demonstrate that the combination of the rescaled method and the AttriRank algorithm can effectively obtain the importance of patents, and provide a systematic and reasonable evaluation method for measuring patent value.</p>","PeriodicalId":21755,"journal":{"name":"Scientometrics","volume":"136 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientometrics","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1007/s11192-024-05023-1","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

As a phased achievement of technological innovation, patent analysis holds extraordinary research significance. By constructing patent citation networks, scholars have proposed various centrality algorithms (such as citation count, PageRank, LeaderRank, etc.) for evaluating the quality and influence of patents. However, these centrality algorithms suffer from age bias, which means these algorithms are more inclined to obtain higher rankings for older patents, thus losing fairness to younger patents. Additionally, the selection of algorithm performance evaluation indicators is crucial. If the indicators are not chosen appropriately, the results may be affected. Therefore, based on the background of Chinese green patents, this paper develops an unbiased evaluation ranking algorithm to identify significant Chinese green patents earlier. The results demonstrate that the combination of the rescaled method and the AttriRank algorithm can effectively obtain the importance of patents, and provide a systematic and reasonable evaluation method for measuring patent value.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应用于中国绿色专利引文网络的排名算法的无偏评价
作为技术创新的阶段性成果,专利分析具有非凡的研究意义。通过构建专利引用网络,学者们提出了各种中心度算法(如引用计数、PageRank、LeaderRank 等)来评价专利的质量和影响力。然而,这些中心度算法存在年龄偏差,即这些算法更倾向于为较老的专利获得较高的排名,从而失去了对较年轻专利的公平性。此外,算法性能评价指标的选择也至关重要。如果指标选择不当,可能会影响结果。因此,本文基于中国绿色专利的背景,开发了一种无偏评价排名算法,以更早地识别重要的中国绿色专利。结果表明,重标度法与AttriRank算法的结合能够有效获取专利的重要性,为衡量专利价值提供了系统合理的评价方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Scientometrics
Scientometrics 管理科学-计算机:跨学科应用
CiteScore
7.20
自引率
17.90%
发文量
351
审稿时长
1.5 months
期刊介绍: Scientometrics aims at publishing original studies, short communications, preliminary reports, review papers, letters to the editor and book reviews on scientometrics. The topics covered are results of research concerned with the quantitative features and characteristics of science. Emphasis is placed on investigations in which the development and mechanism of science are studied by means of (statistical) mathematical methods. The Journal also provides the reader with important up-to-date information about international meetings and events in scientometrics and related fields. Appropriate bibliographic compilations are published as a separate section. Due to its fully interdisciplinary character, Scientometrics is indispensable to research workers and research administrators throughout the world. It provides valuable assistance to librarians and documentalists in central scientific agencies, ministries, research institutes and laboratories. Scientometrics includes the Journal of Research Communication Studies. Consequently its aims and scope cover that of the latter, namely, to bring the results of research investigations together in one place, in such a form that they will be of use not only to the investigators themselves but also to the entrepreneurs and research workers who form the object of these studies.
期刊最新文献
Evaluating the wisdom of scholar crowds from the perspective of knowledge diffusion Automatic gender detection: a methodological procedure and recommendations to computationally infer the gender from names with ChatGPT and gender APIs An integrated indicator for evaluating scientific papers: considering academic impact and novelty Measuring hotness transfer of individual papers based on citation relationship Prevalence and characteristics of graphical abstracts in a specialist pharmacology journal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1