Fibonacci polynomials

Pub Date : 2024-05-15 DOI:10.4310/pamq.2024.v20.n3.a7
A. Garsia, G. Ganzberger
{"title":"Fibonacci polynomials","authors":"A. Garsia, G. Ganzberger","doi":"10.4310/pamq.2024.v20.n3.a7","DOIUrl":null,"url":null,"abstract":"The Fibonacci polynomials ${\\lbrace F_n (x) \\rbrace}_{n \\geq 0}$ have been studied in multiple ways, [$\\href{https://www.imsc.res.in/~viennot/wa_files/viennotop1983-ocr.pdf}{1}$,$\\href{https://www.fq.math.ca/Scanned/11-3/hoggatt1.pdf}{6}$,$\\href{https://www.fq.math.ca/Scanned/12-2/hoggatt1.pdf}{7}$,$\\href{https://www.rivmat.unipr.it/fulltext/1995-4/1995-4-15.pdf}{9}$].In this paper we study them by means of the theory of heaps of Viennot [11, 12]. In this setting our polynomials form a basis ${\\lbrace P_n (x) \\rbrace}_{n \\geq 0}$ with $P_n (x)$ monic of degree $n$. This given, we are forced to set $P_n (x) = F_{n+1} (x)$. The heaps setting extends the Flajolet view$\\href{https://doi.org/10.1016/0012-365X(80)90050-3}{[4]}$ of the classical theory of orthogonal polynomials given by a three term recursion [3, 10]. Thus with heaps most of the identities for the polynomials $P_n (x)$’s can be derived by combinatorial arguments. Using the present setting we derive a variety of new identities. We must mention that the theory of heaps is presented here without restrictions. This is much more than needed to deal with the Fibonacci polynomials. We do this to convey a flavor of the power of heaps. In $\\href{https://link.springer.com/book/10.1007/978-3-030-58373-6 }{[5]}$ there is a chapter dedicated to heaps where most of its contents are dedicated to applications of the theory. In this paper we improve upon the developments in $\\href{https://link.springer.com/book/10.1007/978-3-030-58373-6 }{[5]}$ by adding details that were omitted there.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/pamq.2024.v20.n3.a7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Fibonacci polynomials ${\lbrace F_n (x) \rbrace}_{n \geq 0}$ have been studied in multiple ways, [$\href{https://www.imsc.res.in/~viennot/wa_files/viennotop1983-ocr.pdf}{1}$,$\href{https://www.fq.math.ca/Scanned/11-3/hoggatt1.pdf}{6}$,$\href{https://www.fq.math.ca/Scanned/12-2/hoggatt1.pdf}{7}$,$\href{https://www.rivmat.unipr.it/fulltext/1995-4/1995-4-15.pdf}{9}$].In this paper we study them by means of the theory of heaps of Viennot [11, 12]. In this setting our polynomials form a basis ${\lbrace P_n (x) \rbrace}_{n \geq 0}$ with $P_n (x)$ monic of degree $n$. This given, we are forced to set $P_n (x) = F_{n+1} (x)$. The heaps setting extends the Flajolet view$\href{https://doi.org/10.1016/0012-365X(80)90050-3}{[4]}$ of the classical theory of orthogonal polynomials given by a three term recursion [3, 10]. Thus with heaps most of the identities for the polynomials $P_n (x)$’s can be derived by combinatorial arguments. Using the present setting we derive a variety of new identities. We must mention that the theory of heaps is presented here without restrictions. This is much more than needed to deal with the Fibonacci polynomials. We do this to convey a flavor of the power of heaps. In $\href{https://link.springer.com/book/10.1007/978-3-030-58373-6 }{[5]}$ there is a chapter dedicated to heaps where most of its contents are dedicated to applications of the theory. In this paper we improve upon the developments in $\href{https://link.springer.com/book/10.1007/978-3-030-58373-6 }{[5]}$ by adding details that were omitted there.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
斐波那契多项式
斐波那契多项式 ${lbrace F_n (x) \rbrace}_{n \geq 0}$ 已经被用多种方法研究过了,[$\href{https://www.imsc.res.in/~viennot/wa_files/viennotop1983-ocr.pdf}{1}$,$\href{https://www.fq.math.ca/Scanned/11-3/hoggatt1.pdf}{6}$,$\href{https://www.fq.math.ca/Scanned/12-2/hoggatt1.pdf}{7}$,$\href{https://www.rivmat.unipr.it/fulltext/1995-4/1995-4-15.pdf}{9}$]。在本文中,我们通过 Viennot 的堆理论[11, 12]来研究它们。在这种情况下,我们的多项式构成了一个 ${lbrace P_n (x) \rbrace}_{n \geq 0}$ 的基础,其中 $P_n (x)$ 是阶数 $n$ 的单项式。鉴于此,我们不得不设置 $P_n (x) = F_{n+1} (x)$。堆的设置扩展了三项递归给出的正交多项式经典理论的弗拉约莱特观点 [3, 10]。因此,有了堆,多项式 $P_n (x)$'s 的大多数等式都可以通过组合论证推导出来。利用目前的设置,我们可以推导出各种新的等价性。我们必须指出,这里提出的堆理论没有任何限制。这远远超出了处理斐波那契多项式的需要。我们这样做是为了传达堆的力量。在$\href{https://link.springer.com/book/10.1007/978-3-030-58373-6 }{[5]}$中有一章专门讨论堆,其中大部分内容都是关于堆理论的应用。本文在$\href{https://link.springer.com/book/10.1007/978-3-030-58373-6 }{[5]}$中的发展基础上加以改进,增加了其中省略的细节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1