{"title":"Propagation of Galactic Cosmic Rays in the Heliosphere during Minimum Solar Activity Periods","authors":"Yu. I. Fedorov","doi":"10.3103/S088459132402003X","DOIUrl":null,"url":null,"abstract":"<p>Based on the cosmic ray transport equation, the propagation of charged high-energy particles in heliospheric magnetic fields is considered. The transport equation solution is found in the approximation of low anisotropy in the angular distribution of particles. The energy distribution of galactic cosmic rays at a heliopause is used as a boundary condition. The energy spectrum of cosmic rays in a local interstellar space is considered to be known due to the outstanding results of space missions (Pioneer, Voyager, PAMELA, AMS-02, etc.). The flux density of cosmic rays is calculated in the periods of different solar magnetic polarity. It is shown that the intensity of galactic cosmic rays in positive magnetic polarity periods is maximum near the helioequator. In the periods when the interplanetary magnetic field has a negative polarity, the intensity of cosmic rays decreases with increasing heliolatitude.</p>","PeriodicalId":681,"journal":{"name":"Kinematics and Physics of Celestial Bodies","volume":"40 2","pages":"64 - 76"},"PeriodicalIF":0.5000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kinematics and Physics of Celestial Bodies","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.3103/S088459132402003X","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Based on the cosmic ray transport equation, the propagation of charged high-energy particles in heliospheric magnetic fields is considered. The transport equation solution is found in the approximation of low anisotropy in the angular distribution of particles. The energy distribution of galactic cosmic rays at a heliopause is used as a boundary condition. The energy spectrum of cosmic rays in a local interstellar space is considered to be known due to the outstanding results of space missions (Pioneer, Voyager, PAMELA, AMS-02, etc.). The flux density of cosmic rays is calculated in the periods of different solar magnetic polarity. It is shown that the intensity of galactic cosmic rays in positive magnetic polarity periods is maximum near the helioequator. In the periods when the interplanetary magnetic field has a negative polarity, the intensity of cosmic rays decreases with increasing heliolatitude.
期刊介绍:
Kinematics and Physics of Celestial Bodies is an international peer reviewed journal that publishes original regular and review papers on positional and theoretical astronomy, Earth’s rotation and geodynamics, dynamics and physics of bodies of the Solar System, solar physics, physics of stars and interstellar medium, structure and dynamics of the Galaxy, extragalactic astronomy, atmospheric optics and astronomical climate, instruments and devices, and mathematical processing of astronomical information. The journal welcomes manuscripts from all countries in the English or Russian language.