{"title":"The Characteristic Properties of Solar Activity in Solar Cycle 24","authors":"Kaan Kaplan","doi":"10.3103/S0884591324020041","DOIUrl":null,"url":null,"abstract":"<p>Solar cycle 24 began in December 2008 and ended in December 2019. Maximum of solar cycle 24 occurred in April 2014. Magnetic field intensity has been reported via data from the Wilcox Solar Observatory. Sunspot numbers are reported via the data from WDC-SILSO, Royal Observatory of Belgium. Sunspot area distribution was determined using the data from the Max Planck Institute. Flare Index intensity is indicated, and the data recorded by the Kandilli Observatory at Bogazici University is presented. Hemisphere asymmetries in terms of sunspots and solar flare index are calculated. The number of solar flares that occur at the highest intensity (X-class) during this cycle are presented, the data for which from the NOAA/SWPC. The characteristics of Coronal Mass Ejections are given, as determined using the LASCO coronagraph operating on the SOHO mission. Solar radio flux distribution and comparison with previous cycles was studied using data from Space Weather Canada.</p>","PeriodicalId":681,"journal":{"name":"Kinematics and Physics of Celestial Bodies","volume":"40 2","pages":"105 - 115"},"PeriodicalIF":0.5000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kinematics and Physics of Celestial Bodies","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.3103/S0884591324020041","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Solar cycle 24 began in December 2008 and ended in December 2019. Maximum of solar cycle 24 occurred in April 2014. Magnetic field intensity has been reported via data from the Wilcox Solar Observatory. Sunspot numbers are reported via the data from WDC-SILSO, Royal Observatory of Belgium. Sunspot area distribution was determined using the data from the Max Planck Institute. Flare Index intensity is indicated, and the data recorded by the Kandilli Observatory at Bogazici University is presented. Hemisphere asymmetries in terms of sunspots and solar flare index are calculated. The number of solar flares that occur at the highest intensity (X-class) during this cycle are presented, the data for which from the NOAA/SWPC. The characteristics of Coronal Mass Ejections are given, as determined using the LASCO coronagraph operating on the SOHO mission. Solar radio flux distribution and comparison with previous cycles was studied using data from Space Weather Canada.
期刊介绍:
Kinematics and Physics of Celestial Bodies is an international peer reviewed journal that publishes original regular and review papers on positional and theoretical astronomy, Earth’s rotation and geodynamics, dynamics and physics of bodies of the Solar System, solar physics, physics of stars and interstellar medium, structure and dynamics of the Galaxy, extragalactic astronomy, atmospheric optics and astronomical climate, instruments and devices, and mathematical processing of astronomical information. The journal welcomes manuscripts from all countries in the English or Russian language.