Federico Grazzini, Joshua Dorrington, Christian M. Grams, George C. Craig, Linus Magnusson, Frederic Vitart
{"title":"Improving forecasts of precipitation extremes over northern and central Italy using machine learning","authors":"Federico Grazzini, Joshua Dorrington, Christian M. Grams, George C. Craig, Linus Magnusson, Frederic Vitart","doi":"10.1002/qj.4755","DOIUrl":null,"url":null,"abstract":"The accurate prediction of intense precipitation events is one of the main objectives of operational weather services. This task is even more relevant nowadays, with the rapid progression of global warming which intensifies these events. Numerical weather prediction models have improved continuously over time, providing uncertainty estimation with dynamical ensembles. However, direct precipitation forecasting is still challenging. Greater availability of machine‐learning tools paves the way to a hybrid forecasting approach, with the optimal combination of physical models, event statistics, and user‐oriented postprocessing. Here we describe a specific chain, based on a random‐forest (RF) pipeline, specialised in recognising favourable synoptic conditions leading to precipitation extremes and subsequently classifying extremes into predefined types. The application focuses on northern and central Italy, taken as a testbed region, but is seamlessly extensible to other regions and time‐scales. The system is called MaLCoX (Machine Learning model predicting Conditions for eXtreme precipitation) and is running daily at the Italian regional weather service of ARPAE Emilia‐Romagna. MalCoX has been trained with the ARCIS gridded high‐resolution precipitation dataset as the target truth, using the last 20 years of the European Centre for Medium‐Range Weather Forecasts (ECMWF) reforecast dataset as input predictors. We show that, with a long enough training period, the optimal blend of larger‐scale information with direct model output improves the probabilistic forecast accuracy of extremes in the medium range. In addition, with specific methods, we provide a useful diagnostic to convey to forecasters the underlying physical storyline which makes a meteorological event extreme.","PeriodicalId":49646,"journal":{"name":"Quarterly Journal of the Royal Meteorological Society","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of the Royal Meteorological Society","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/qj.4755","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The accurate prediction of intense precipitation events is one of the main objectives of operational weather services. This task is even more relevant nowadays, with the rapid progression of global warming which intensifies these events. Numerical weather prediction models have improved continuously over time, providing uncertainty estimation with dynamical ensembles. However, direct precipitation forecasting is still challenging. Greater availability of machine‐learning tools paves the way to a hybrid forecasting approach, with the optimal combination of physical models, event statistics, and user‐oriented postprocessing. Here we describe a specific chain, based on a random‐forest (RF) pipeline, specialised in recognising favourable synoptic conditions leading to precipitation extremes and subsequently classifying extremes into predefined types. The application focuses on northern and central Italy, taken as a testbed region, but is seamlessly extensible to other regions and time‐scales. The system is called MaLCoX (Machine Learning model predicting Conditions for eXtreme precipitation) and is running daily at the Italian regional weather service of ARPAE Emilia‐Romagna. MalCoX has been trained with the ARCIS gridded high‐resolution precipitation dataset as the target truth, using the last 20 years of the European Centre for Medium‐Range Weather Forecasts (ECMWF) reforecast dataset as input predictors. We show that, with a long enough training period, the optimal blend of larger‐scale information with direct model output improves the probabilistic forecast accuracy of extremes in the medium range. In addition, with specific methods, we provide a useful diagnostic to convey to forecasters the underlying physical storyline which makes a meteorological event extreme.
期刊介绍:
The Quarterly Journal of the Royal Meteorological Society is a journal published by the Royal Meteorological Society. It aims to communicate and document new research in the atmospheric sciences and related fields. The journal is considered one of the leading publications in meteorology worldwide. It accepts articles, comprehensive review articles, and comments on published papers. It is published eight times a year, with additional special issues.
The Quarterly Journal has a wide readership of scientists in the atmospheric and related fields. It is indexed and abstracted in various databases, including Advanced Polymers Abstracts, Agricultural Engineering Abstracts, CAB Abstracts, CABDirect, COMPENDEX, CSA Civil Engineering Abstracts, Earthquake Engineering Abstracts, Engineered Materials Abstracts, Science Citation Index, SCOPUS, Web of Science, and more.