Insights into docking in megasynthases from the investigation of the toblerol trans-AT polyketide synthase: many α-helical means to an end†

IF 4.2 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY RSC Chemical Biology Pub Date : 2024-05-16 DOI:10.1039/D4CB00075G
Serge Scat, Kira J. Weissman and Benjamin Chagot
{"title":"Insights into docking in megasynthases from the investigation of the toblerol trans-AT polyketide synthase: many α-helical means to an end†","authors":"Serge Scat, Kira J. Weissman and Benjamin Chagot","doi":"10.1039/D4CB00075G","DOIUrl":null,"url":null,"abstract":"<p >The fidelity of biosynthesis by modular polyketide synthases (PKSs) depends on specific moderate affinity interactions between successive polypeptide subunits mediated by docking domains (DDs). These sequence elements are notably portable, allowing their transplantation into alternative biosynthetic and metabolic contexts. Herein, we use integrative structural biology to characterize a pair of DDs from the toblerol <em>trans</em>-AT PKS. Both are intrinsically disordered regions (IDRs) that fold into a 3 α-helix docking complex of unprecedented topology. The C-terminal docking domain (<small><sup>C</sup></small>DD) resembles the 4 α-helix type (4HB) <small><sup>C</sup></small>DDs, which shows that the same type of DD can be redeployed to form complexes of distinct geometry. By carefully re-examining known DD structures, we further extend this observation to type 2 docking domains, establishing previously unsuspected structural relations between DD types. Taken together, these data illustrate the plasticity of α-helical DDs, which allow the formation of a diverse topological spectrum of docked complexes. The newly identified DDs should also find utility in modular PKS genetic engineering.</p>","PeriodicalId":40691,"journal":{"name":"RSC Chemical Biology","volume":" 7","pages":" 669-683"},"PeriodicalIF":4.2000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/cb/d4cb00075g?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Chemical Biology","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/cb/d4cb00075g","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The fidelity of biosynthesis by modular polyketide synthases (PKSs) depends on specific moderate affinity interactions between successive polypeptide subunits mediated by docking domains (DDs). These sequence elements are notably portable, allowing their transplantation into alternative biosynthetic and metabolic contexts. Herein, we use integrative structural biology to characterize a pair of DDs from the toblerol trans-AT PKS. Both are intrinsically disordered regions (IDRs) that fold into a 3 α-helix docking complex of unprecedented topology. The C-terminal docking domain (CDD) resembles the 4 α-helix type (4HB) CDDs, which shows that the same type of DD can be redeployed to form complexes of distinct geometry. By carefully re-examining known DD structures, we further extend this observation to type 2 docking domains, establishing previously unsuspected structural relations between DD types. Taken together, these data illustrate the plasticity of α-helical DDs, which allow the formation of a diverse topological spectrum of docked complexes. The newly identified DDs should also find utility in modular PKS genetic engineering.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过对 toblerol 反式-AT 多酮类合成酶的研究,深入了解巨合成酶的对接:实现目的的多种 α 螺旋手段
模块化聚酮酸合成酶(PKSs)生物合成的保真度取决于对接结构域(DDs)介导的连续多肽亚基之间特异的、中等亲和力的相互作用。这些序列元件具有明显的可移植性,可以移植到其他生物合成和代谢环境中。在这里,我们利用综合结构生物学研究了 toblerol trans-AT PKS 的一对对接结构域。这两个伙伴都是内在无序区(IDR),它们折叠成一个前所未有的拓扑结构的 3 α-螺旋对接复合物。C 端对接结构域(CDD)与 4 α-螺旋型(4HB)CDD 相似,这一结果表明,同一类型的 DD 可以重新部署,形成不同几何形状的复合物。通过仔细重新研究已知的 DD 结构,我们进一步将这一观察结果扩展到了 2 型对接结构域,建立了以前未曾想到的 DD 类型之间的结构关系。总之,这些数据说明了α-螺旋对接结构域的可塑性,它可以形成多种拓扑结构的对接复合物。新发现的 DDs 还可用于模块化 PKS 基因工程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.10
自引率
0.00%
发文量
128
审稿时长
10 weeks
期刊最新文献
Back cover Cultivating the future leaders of chemical biology. Red and far-red cleavable fluorescent dyes for self-labelling enzyme protein tagging and interrogation of GPCR co-internalization. Rational engineering of an antimalarial peptide with enhanced proteolytic stability and preserved parasite invasion inhibitory activity. A nanoengineered tandem nitroreductase: designing a robust prodrug-activating nanoreactor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1