Coherent Microwave, Optical, and Mechanical Quantum Control of Spin Qubits in Diamond

Laura Orphal‐Kobin, Cem Güney Torun, Julian M. Bopp, Gregor Pieplow, Tim Schröder
{"title":"Coherent Microwave, Optical, and Mechanical Quantum Control of Spin Qubits in Diamond","authors":"Laura Orphal‐Kobin, Cem Güney Torun, Julian M. Bopp, Gregor Pieplow, Tim Schröder","doi":"10.1002/qute.202300432","DOIUrl":null,"url":null,"abstract":"Diamond has emerged as a highly promising platform for quantum network applications. Color centers in diamond fulfill the fundamental requirements for quantum nodes: they constitute optically accessible quantum systems with long‐lived spin qubits. Furthermore, they provide access to a quantum register of electronic and nuclear spin qubits and they mediate entanglement between spins and photons. All these operations require coherent control of the color center's spin state. This review provides a comprehensive overview of the state‐of‐the‐art, challenges, and prospects of such schemes, including high‐fidelity initialization, coherent manipulation, and readout of spin states. Established microwave and optical control techniques are reviewed, and moreover, emerging methods such as cavity‐mediated spin–photon interactions and mechanical control based on spin–phonon interactions are summarized. For different types of color centers, namely, nitrogen–vacancy and group‐IV color centers, distinct challenges persist that are subject of ongoing research. Beyond fundamental coherent spin qubit control techniques, advanced demonstrations in quantum network applications are outlined, for example, the integration of individual color centers for accessing (nuclear) multiqubit registers. Finally, the role of diamond spin qubits in the realization of future quantum information applications is described.","PeriodicalId":501028,"journal":{"name":"Advanced Quantum Technologies","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Quantum Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/qute.202300432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Diamond has emerged as a highly promising platform for quantum network applications. Color centers in diamond fulfill the fundamental requirements for quantum nodes: they constitute optically accessible quantum systems with long‐lived spin qubits. Furthermore, they provide access to a quantum register of electronic and nuclear spin qubits and they mediate entanglement between spins and photons. All these operations require coherent control of the color center's spin state. This review provides a comprehensive overview of the state‐of‐the‐art, challenges, and prospects of such schemes, including high‐fidelity initialization, coherent manipulation, and readout of spin states. Established microwave and optical control techniques are reviewed, and moreover, emerging methods such as cavity‐mediated spin–photon interactions and mechanical control based on spin–phonon interactions are summarized. For different types of color centers, namely, nitrogen–vacancy and group‐IV color centers, distinct challenges persist that are subject of ongoing research. Beyond fundamental coherent spin qubit control techniques, advanced demonstrations in quantum network applications are outlined, for example, the integration of individual color centers for accessing (nuclear) multiqubit registers. Finally, the role of diamond spin qubits in the realization of future quantum information applications is described.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
金刚石中自旋量子位的相干微波、光学和机械量子控制
金刚石已成为量子网络应用中极具前景的平台。金刚石中的色彩中心符合量子节点的基本要求:它们构成了具有长寿命自旋量子比特的光学可访问量子系统。此外,它们还可以访问电子和核自旋比特的量子寄存器,并介导自旋和光子之间的纠缠。所有这些操作都需要对色彩中心的自旋状态进行连贯控制。本综述全面概述了此类方案的最新进展、挑战和前景,包括自旋状态的高保真初始化、相干操纵和读出。文章回顾了已有的微波和光学控制技术,还总结了新出现的方法,如空腔介导的自旋-光子相互作用和基于自旋-光子相互作用的机械控制。对于不同类型的颜色中心,即氮空位和第 IV 族颜色中心,仍然存在着不同的挑战,这也是当前研究的主题。除了基本的相干自旋量子比特控制技术外,还概述了量子网络应用中的先进示范,例如整合单个颜色中心以访问(核)多量子比特寄存器。最后,介绍了钻石自旋量子比特在实现未来量子信息应用中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancing the Sensitivity of Quantum Fiber‐Optical Gyroscope via a Non‐Gaussian‐State Probe Implementation of Entanglement Witnesses with Quantum Circuits Quantum Effect Enables Large Elastocaloric Effect in Monolayer MoSi2N4${\rm MoSi}_2{\rm N}_4$ and Graphene Dynamic Phase Enabled Topological Mode Steering in Composite Su‐Schrieffer–Heeger Waveguide Arrays Variational Quantum Algorithm‐Preserving Feasible Space for Solving the Uncapacitated Facility Location Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1