Meta label associated loss for fine-grained visual recognition

IF 7.3 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Science China Information Sciences Pub Date : 2024-05-15 DOI:10.1007/s11432-023-3922-2
Yanchao Li, Fu Xiao, Hao Li, Qun Li, Shui Yu
{"title":"Meta label associated loss for fine-grained visual recognition","authors":"Yanchao Li, Fu Xiao, Hao Li, Qun Li, Shui Yu","doi":"10.1007/s11432-023-3922-2","DOIUrl":null,"url":null,"abstract":"<p>Recently, intensive attempts have been made to design robust models for fine-grained visual recognition, most notably are the impressive gains for training with noisy labels by incorporating a reweighting strategy into a meta-learning framework. However, it is limited to up or downweighting the contribution of an instance for label reweighting approaches in the learning process. To solve this issue, a novel noise-tolerant method with auxiliary web data is proposed. Specifically, first, the associations made from embeddings of well-labeled data with those of web data and back at the same class are measured. Next, its association probability is employed as a weighting fusion strategy into angular margin-based loss, which makes the trained model robust to noisy datasets. To reduce the influence of the gap between the well-labeled and noisy web data, a bridge schema is proposed via the corresponding loss that encourages the learned embeddings to be coherent. Lastly, the formulation is encapsulated into the meta-learning framework, which can reduce the overfitting of models and learn the network parameters to be noise-tolerant. Extensive experiments are performed on benchmark datasets, and the results clearly show the superiority of the proposed method over existing state-of-the-art approaches.</p>","PeriodicalId":21618,"journal":{"name":"Science China Information Sciences","volume":"132 1","pages":""},"PeriodicalIF":7.3000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11432-023-3922-2","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, intensive attempts have been made to design robust models for fine-grained visual recognition, most notably are the impressive gains for training with noisy labels by incorporating a reweighting strategy into a meta-learning framework. However, it is limited to up or downweighting the contribution of an instance for label reweighting approaches in the learning process. To solve this issue, a novel noise-tolerant method with auxiliary web data is proposed. Specifically, first, the associations made from embeddings of well-labeled data with those of web data and back at the same class are measured. Next, its association probability is employed as a weighting fusion strategy into angular margin-based loss, which makes the trained model robust to noisy datasets. To reduce the influence of the gap between the well-labeled and noisy web data, a bridge schema is proposed via the corresponding loss that encourages the learned embeddings to be coherent. Lastly, the formulation is encapsulated into the meta-learning framework, which can reduce the overfitting of models and learn the network parameters to be noise-tolerant. Extensive experiments are performed on benchmark datasets, and the results clearly show the superiority of the proposed method over existing state-of-the-art approaches.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于细粒度视觉识别的元标签相关损失
最近,人们在设计用于细粒度视觉识别的稳健模型方面进行了大量尝试,其中最引人注目的是通过在元学习框架中加入重新加权策略,在使用噪声标签进行训练时获得了令人印象深刻的收益。然而,这种方法仅限于在学习过程中提高或降低标签重权方法的实例贡献权重。为了解决这个问题,我们提出了一种利用辅助网络数据的新型容噪方法。具体地说,首先,测量了标签良好的数据嵌入与网络数据嵌入之间的关联,并将其返回到同一类别。然后,将其关联概率作为一种加权融合策略,纳入基于角度余量的损失中,从而使训练好的模型对噪声数据集具有鲁棒性。为了减少标记良好的网络数据与噪声网络数据之间差距的影响,我们通过相应的损失提出了一种桥接方案,鼓励学习到的嵌入数据保持一致。最后,该公式被封装到元学习框架中,可以减少模型的过拟合,并学习网络参数,使其具有噪声耐受性。我们在基准数据集上进行了广泛的实验,结果清楚地表明,所提出的方法优于现有的最先进方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Science China Information Sciences
Science China Information Sciences COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
12.60
自引率
5.70%
发文量
224
审稿时长
8.3 months
期刊介绍: Science China Information Sciences is a dedicated journal that showcases high-quality, original research across various domains of information sciences. It encompasses Computer Science & Technologies, Control Science & Engineering, Information & Communication Engineering, Microelectronics & Solid-State Electronics, and Quantum Information, providing a platform for the dissemination of significant contributions in these fields.
期刊最新文献
Weighted sum power maximization for STAR-RIS-aided SWIPT systems with nonlinear energy harvesting TSCompiler: efficient compilation framework for dynamic-shape models NeurDB: an AI-powered autonomous data system State and parameter identification of linearized water wave equation via adjoint method An STP look at logical blocking of finite state machines: formulation, detection, and search
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1