{"title":"Hashing ATD Tags for Low-Overhead Safe Contention Monitoring","authors":"Pablo Andreu;Pedro Lopez;Carles Hernandez","doi":"10.1109/LCA.2024.3401570","DOIUrl":null,"url":null,"abstract":"Increasing the performance of safety-critical systems via introducing multicore processors is becoming the norm. However, when multiple cores access a shared cache, inter-core evictions become a relevant source of interference that must be appropriately controlled. To solve this issue, one can statically partition caches and remove the interference. Unfortunately, this comes at the expense of less flexibility and, in some cases, worse performance. In this context, enabling more flexible cache allocation policies requires additional monitoring support. This paper proposes HashTAG, a novel approach to accurately upper-bound inter-core eviction interference. HashTAG enables a low-overhead implementation of an Auxiliary Tag Directory to determine inter-core evictions. Our results show that no inter-task interference underprediction is possible with HashTAG while providing a 44% reduction in ATD area with only 1.14% median overprediction.","PeriodicalId":51248,"journal":{"name":"IEEE Computer Architecture Letters","volume":"23 2","pages":"166-169"},"PeriodicalIF":1.4000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10530895","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Architecture Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10530895/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Increasing the performance of safety-critical systems via introducing multicore processors is becoming the norm. However, when multiple cores access a shared cache, inter-core evictions become a relevant source of interference that must be appropriately controlled. To solve this issue, one can statically partition caches and remove the interference. Unfortunately, this comes at the expense of less flexibility and, in some cases, worse performance. In this context, enabling more flexible cache allocation policies requires additional monitoring support. This paper proposes HashTAG, a novel approach to accurately upper-bound inter-core eviction interference. HashTAG enables a low-overhead implementation of an Auxiliary Tag Directory to determine inter-core evictions. Our results show that no inter-task interference underprediction is possible with HashTAG while providing a 44% reduction in ATD area with only 1.14% median overprediction.
期刊介绍:
IEEE Computer Architecture Letters is a rigorously peer-reviewed forum for publishing early, high-impact results in the areas of uni- and multiprocessor computer systems, computer architecture, microarchitecture, workload characterization, performance evaluation and simulation techniques, and power-aware computing. Submissions are welcomed on any topic in computer architecture, especially but not limited to: microprocessor and multiprocessor systems, microarchitecture and ILP processors, workload characterization, performance evaluation and simulation techniques, compiler-hardware and operating system-hardware interactions, interconnect architectures, memory and cache systems, power and thermal issues at the architecture level, I/O architectures and techniques, independent validation of previously published results, analysis of unsuccessful techniques, domain-specific processor architectures (e.g., embedded, graphics, network, etc.), real-time and high-availability architectures, reconfigurable systems.