{"title":"A Box-Spline Framework for Inverse Problems With Continuous-Domain Sparsity Constraints","authors":"Mehrsa Pourya;Aleix Boquet-Pujadas;Michael Unser","doi":"10.1109/TCI.2024.3402376","DOIUrl":null,"url":null,"abstract":"The formulation of inverse problems in the continuum eliminates discretization errors and allows for the exact incorporation of priors. In this paper, we formulate a continuous-domain inverse problem over a search space of continuous and piecewise-linear functions parameterized by box splines. We present a numerical framework to solve those inverse problems with total variation (TV) or its Hessian-based extension (HTV) as regularizers. We show that the box-spline basis allows for exact and efficient convolution-based expressions for both TV and HTV. Our optimization strategy relies on a multiresolution scheme whereby we progressively refine the solution until its cost stabilizes. We test our framework on linear inverse problems and demonstrate its ability to effectively reach a stage beyond which the refinement of the search space no longer decreases the optimization cost.","PeriodicalId":56022,"journal":{"name":"IEEE Transactions on Computational Imaging","volume":"10 ","pages":"790-805"},"PeriodicalIF":4.2000,"publicationDate":"2024-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Imaging","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10533663/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The formulation of inverse problems in the continuum eliminates discretization errors and allows for the exact incorporation of priors. In this paper, we formulate a continuous-domain inverse problem over a search space of continuous and piecewise-linear functions parameterized by box splines. We present a numerical framework to solve those inverse problems with total variation (TV) or its Hessian-based extension (HTV) as regularizers. We show that the box-spline basis allows for exact and efficient convolution-based expressions for both TV and HTV. Our optimization strategy relies on a multiresolution scheme whereby we progressively refine the solution until its cost stabilizes. We test our framework on linear inverse problems and demonstrate its ability to effectively reach a stage beyond which the refinement of the search space no longer decreases the optimization cost.
期刊介绍:
The IEEE Transactions on Computational Imaging will publish articles where computation plays an integral role in the image formation process. Papers will cover all areas of computational imaging ranging from fundamental theoretical methods to the latest innovative computational imaging system designs. Topics of interest will include advanced algorithms and mathematical techniques, model-based data inversion, methods for image and signal recovery from sparse and incomplete data, techniques for non-traditional sensing of image data, methods for dynamic information acquisition and extraction from imaging sensors, software and hardware for efficient computation in imaging systems, and highly novel imaging system design.