Sr-Incorporated Bioactive Glass Remodels the Immunological Microenvironment by Enhancing the Mitochondrial Function of Macrophage via the PI3K/AKT/mTOR Signaling Pathway

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Biomaterials Science & Engineering Pub Date : 2024-05-20 DOI:10.1021/acsbiomaterials.4c00228
Huanhuan Qiu, Huacui Xiong, Jiafu Zheng, Yuqi Peng, Chunhui Wang, Qing Hu, Fujian Zhao* and Ke Chen*, 
{"title":"Sr-Incorporated Bioactive Glass Remodels the Immunological Microenvironment by Enhancing the Mitochondrial Function of Macrophage via the PI3K/AKT/mTOR Signaling Pathway","authors":"Huanhuan Qiu,&nbsp;Huacui Xiong,&nbsp;Jiafu Zheng,&nbsp;Yuqi Peng,&nbsp;Chunhui Wang,&nbsp;Qing Hu,&nbsp;Fujian Zhao* and Ke Chen*,&nbsp;","doi":"10.1021/acsbiomaterials.4c00228","DOIUrl":null,"url":null,"abstract":"<p >The repair of critical-sized bone defects continues to pose a challenge in clinics. Strontium (Sr), recognized for its function in bone metabolism regulation, has shown potential in bone repair. However, the underlying mechanism through which Sr<sup>2+</sup> guided favorable osteogenesis by modulating macrophages remains unclear, limiting their application in the design of bone biomaterials. Herein, Sr-incorporated bioactive glass (SrBG) was synthesized for further investigation. The release of Sr ions enhanced the immunomodulatory properties and osteogenic potential by modulating the polarization of macrophages toward the M2 phenotype. <i>In vivo</i>, a 3D-printed SrBG scaffold was fabricated and showed consistently improved bone regeneration by creating a prohealing immunological microenvironment. RNA sequencing was performed to explore the underlying mechanisms. It was found that Sr ions might enhance the mitochondrial function of macrophage by activating PI3K/AKT/mTOR signaling, thereby favoring osteogenesis. Our findings demonstrate the relationship between the immunomodulatory role of Sr ions and the mitochondrial function of macrophages. By focusing on the mitochondrial function of macrophages, Sr<sup>2+</sup>-mediated immunomodulation sheds light on the future design of biomaterials for tissue regenerative engineering.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsbiomaterials.4c00228","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The repair of critical-sized bone defects continues to pose a challenge in clinics. Strontium (Sr), recognized for its function in bone metabolism regulation, has shown potential in bone repair. However, the underlying mechanism through which Sr2+ guided favorable osteogenesis by modulating macrophages remains unclear, limiting their application in the design of bone biomaterials. Herein, Sr-incorporated bioactive glass (SrBG) was synthesized for further investigation. The release of Sr ions enhanced the immunomodulatory properties and osteogenic potential by modulating the polarization of macrophages toward the M2 phenotype. In vivo, a 3D-printed SrBG scaffold was fabricated and showed consistently improved bone regeneration by creating a prohealing immunological microenvironment. RNA sequencing was performed to explore the underlying mechanisms. It was found that Sr ions might enhance the mitochondrial function of macrophage by activating PI3K/AKT/mTOR signaling, thereby favoring osteogenesis. Our findings demonstrate the relationship between the immunomodulatory role of Sr ions and the mitochondrial function of macrophages. By focusing on the mitochondrial function of macrophages, Sr2+-mediated immunomodulation sheds light on the future design of biomaterials for tissue regenerative engineering.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过 PI3K/AKT/mTOR 信号通路增强巨噬细胞线粒体功能的掺锶生物活性玻璃可重塑免疫微环境
修复临界大小的骨缺损仍然是临床上的一项挑战。锶(Sr)被认为具有调节骨代谢的功能,在骨修复方面具有潜力。然而,Sr2+通过调节巨噬细胞引导有利骨生成的潜在机制仍不清楚,这限制了其在骨生物材料设计中的应用。在此,我们合成了掺入硒的生物活性玻璃(SrBG)以作进一步研究。通过调节巨噬细胞向 M2 表型的极化,硒离子的释放增强了其免疫调节特性和成骨潜力。在体内,三维打印的 SrBG 支架被制造出来,并通过创造一个促进愈合的免疫微环境,显示出持续改善的骨再生能力。研究人员进行了 RNA 测序,以探索其潜在机制。研究发现,锶离子可通过激活 PI3K/AKT/mTOR 信号增强巨噬细胞的线粒体功能,从而促进骨生成。我们的研究结果证明了硒离子的免疫调节作用与巨噬细胞线粒体功能之间的关系。通过关注巨噬细胞的线粒体功能,Sr2+介导的免疫调节为未来组织再生工程生物材料的设计提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
期刊最新文献
Europium-Doped 3D Dimensional Porous Calcium Phosphate Scaffolds as a Strategy for Facilitating the Comprehensive Regeneration of Bone Tissue: In Vitro and In Vivo. Quantum Insights into Partially Molecular Imprinted Microspheres for Anticancer Therapeutics: Experimental and Theoretical Studies. Shape Memory Polymer Bioglass Composite Scaffolds Designed to Heal Complex Bone Defects. Mechanical Properties, Microstructure, Degradation Behavior, and Biocompatibility of Zn-0.5Ti-0.5Fe and Zn-0.5Ti-0.5Mg Guided Bone Regeneration Barrier Membranes Prepared Using a Powder Metallurgy Method. Software Integrated Personalized Biosensing Device for Serum Creatinine Detection Based on Boron doped MXene Nanohybrid.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1