Heterophase Intermetallic Compounds for Electrocatalytic Hydrogen Production at Industrial-Scale Current Densities.

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2024-07-31 Epub Date: 2024-05-20 DOI:10.1021/jacs.4c01985
Xiao Ma, Chaoqun Ma, Jing Xia, Sumei Han, Huaifang Zhang, Caihong He, Fukai Feng, Gang Lin, Wenbin Cao, Xiangmin Meng, Lijie Zhu, Xiaojuan Zhu, An-Liang Wang, Haiqing Yin, Qipeng Lu
{"title":"Heterophase Intermetallic Compounds for Electrocatalytic Hydrogen Production at Industrial-Scale Current Densities.","authors":"Xiao Ma, Chaoqun Ma, Jing Xia, Sumei Han, Huaifang Zhang, Caihong He, Fukai Feng, Gang Lin, Wenbin Cao, Xiangmin Meng, Lijie Zhu, Xiaojuan Zhu, An-Liang Wang, Haiqing Yin, Qipeng Lu","doi":"10.1021/jacs.4c01985","DOIUrl":null,"url":null,"abstract":"<p><p>Heterophase nanomaterials have sparked significant research interest in catalysis due to their distinctive properties arising from synergistic effects of different components and the formed phase boundary. However, challenges persist in the controlled synthesis of heterophase intermetallic compounds (IMCs), primarily due to the lattice mismatch of distinct crystal phases and the difficulty in achieving precise control of the phase transitions. Herein, orthorhombic/cubic Ru<sub>2</sub>Ge<sub>3</sub>/RuGe IMCs with engineered boundary architecture are synthesized and anchored on the reduced graphene oxide. The Ru<sub>2</sub>Ge<sub>3</sub>/RuGe IMCs exhibit excellent hydrogen evolution reaction (HER) performance with a high current density of 1000 mA cm<sup>-2</sup> at a low overpotential of 135 mV. The presence of phase boundaries enhances charge transfer and improves the kinetics of water dissociation while optimizing the processes of hydrogen adsorption/desorption, thus boosting the HER performance. Moreover, an anion exchange membrane electrolyzer is constructed using Ru<sub>2</sub>Ge<sub>3</sub>/RuGe as the cathode electrocatalyst, which achieves a current density of 1000 mA cm<sup>-2</sup> at a low voltage of 1.73 V, and the activity remains virtually undiminished over 500 h.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":null,"pages":null},"PeriodicalIF":14.4000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c01985","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Heterophase nanomaterials have sparked significant research interest in catalysis due to their distinctive properties arising from synergistic effects of different components and the formed phase boundary. However, challenges persist in the controlled synthesis of heterophase intermetallic compounds (IMCs), primarily due to the lattice mismatch of distinct crystal phases and the difficulty in achieving precise control of the phase transitions. Herein, orthorhombic/cubic Ru2Ge3/RuGe IMCs with engineered boundary architecture are synthesized and anchored on the reduced graphene oxide. The Ru2Ge3/RuGe IMCs exhibit excellent hydrogen evolution reaction (HER) performance with a high current density of 1000 mA cm-2 at a low overpotential of 135 mV. The presence of phase boundaries enhances charge transfer and improves the kinetics of water dissociation while optimizing the processes of hydrogen adsorption/desorption, thus boosting the HER performance. Moreover, an anion exchange membrane electrolyzer is constructed using Ru2Ge3/RuGe as the cathode electrocatalyst, which achieves a current density of 1000 mA cm-2 at a low voltage of 1.73 V, and the activity remains virtually undiminished over 500 h.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在工业级电流密度下用于电催化制氢的异相金属间化合物。
异相纳米材料因其不同成分的协同效应和所形成的相界而具有独特的性能,因此在催化领域引发了极大的研究兴趣。然而,异相金属间化合物(IMCs)的可控合成仍然面临挑战,主要原因是不同晶相的晶格不匹配以及难以实现相变的精确控制。在此,我们合成了具有工程边界结构的正方晶/立方晶 Ru2Ge3/RuGe IMC,并将其锚定在还原氧化石墨烯上。Ru2Ge3/RuGe IMC 表现出优异的氢进化反应(HER)性能,在 135 mV 的低过电位条件下,电流密度高达 1000 mA cm-2。相界的存在增强了电荷转移,改善了水的解离动力学,同时优化了氢的吸附/解吸过程,从而提高了氢进化反应性能。此外,利用 Ru2Ge3/RuGe 作为阴极电催化剂,构建了阴离子交换膜电解槽,在 1.73 V 的低电压下实现了 1000 mA cm-2 的电流密度,并且在 500 小时内活性几乎没有减弱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
Expanding the Clip-and-Cleave Concept: Approaching Enantioselective C-H Hydroxylations by Copper Imine Complexes Using O2 and H2O2 as Oxidants. Ferrocenyl PNNP Ligands-Controlled Chromium Complex-Catalyzed Photocatalytic Reduction of CO2 to Formic Acid. Heterolytic C-H Activation Routes in Catalytic Dehydrogenation of Light Alkanes on Lewis Acid-Base Pairs at ZrO2 Surfaces. Tandem Targeting and Dual Aggregation of an AIEgen for Enhanced Near-Infrared Fluorescence Imaging of Tumors. Synergy of Charged Domain Walls in 2D In-Plane Polarized Ferroelectric GeS for Photocatalytic Water Splitting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1