In vivo imaging reveals a synchronized correlation among neurotransmitter dynamics during propofol and sevoflurane anesthesia.

IF 4 1区 生物学 Q1 ZOOLOGY Zoological Research Pub Date : 2024-05-18 DOI:10.24272/j.issn.2095-8137.2023.302
Gao-Lin Qiu, Li-Jun Peng, Peng Wang, Zhi-Lai Yang, Ji-Qian Zhang, Hu Liu, Xiao-Na Zhu, Jin Rao, Xue-Sheng Liu
{"title":"<i>In vivo</i> imaging reveals a synchronized correlation among neurotransmitter dynamics during propofol and sevoflurane anesthesia.","authors":"Gao-Lin Qiu, Li-Jun Peng, Peng Wang, Zhi-Lai Yang, Ji-Qian Zhang, Hu Liu, Xiao-Na Zhu, Jin Rao, Xue-Sheng Liu","doi":"10.24272/j.issn.2095-8137.2023.302","DOIUrl":null,"url":null,"abstract":"<p><p>General anesthesia is widely applied in clinical practice. However, the precise mechanism of loss of consciousness induced by general anesthetics remains unknown. Here, we measured the dynamics of five neurotransmitters, including γ-aminobutyric acid, glutamate, norepinephrine, acetylcholine, and dopamine, in the medial prefrontal cortex and primary visual cortex of C57BL/6 mice through <i>in vivo</i> fiber photometry and genetically encoded neurotransmitter sensors under anesthesia to reveal the mechanism of general anesthesia from a neurotransmitter perspective. Results revealed that the concentrations of γ-aminobutyric acid, glutamate, norepinephrine, and acetylcholine increased in the cortex during propofol-induced loss of consciousness. Dopamine levels did not change following the hypnotic dose of propofol but increased significantly following surgical doses of propofol anesthesia. Notably, the concentrations of the five neurotransmitters generally decreased during sevoflurane-induced loss of consciousness. Furthermore, the neurotransmitter dynamic networks were not synchronized in the non-anesthesia groups but were highly synchronized in the anesthetic groups. These findings suggest that neurotransmitter dynamic network synchronization may cause anesthetic-induced loss of consciousness.</p>","PeriodicalId":48636,"journal":{"name":"Zoological Research","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11188615/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zoological Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.24272/j.issn.2095-8137.2023.302","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

General anesthesia is widely applied in clinical practice. However, the precise mechanism of loss of consciousness induced by general anesthetics remains unknown. Here, we measured the dynamics of five neurotransmitters, including γ-aminobutyric acid, glutamate, norepinephrine, acetylcholine, and dopamine, in the medial prefrontal cortex and primary visual cortex of C57BL/6 mice through in vivo fiber photometry and genetically encoded neurotransmitter sensors under anesthesia to reveal the mechanism of general anesthesia from a neurotransmitter perspective. Results revealed that the concentrations of γ-aminobutyric acid, glutamate, norepinephrine, and acetylcholine increased in the cortex during propofol-induced loss of consciousness. Dopamine levels did not change following the hypnotic dose of propofol but increased significantly following surgical doses of propofol anesthesia. Notably, the concentrations of the five neurotransmitters generally decreased during sevoflurane-induced loss of consciousness. Furthermore, the neurotransmitter dynamic networks were not synchronized in the non-anesthesia groups but were highly synchronized in the anesthetic groups. These findings suggest that neurotransmitter dynamic network synchronization may cause anesthetic-induced loss of consciousness.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
体内成像显示了异丙酚和七氟醚麻醉期间神经递质动态的同步相关性。
全身麻醉被广泛应用于临床实践。然而,全身麻醉诱导意识丧失的确切机制仍不清楚。在此,我们通过体内纤维光度计和基因编码的神经递质传感器测量了麻醉状态下C57BL/6小鼠内侧前额叶皮层和初级视皮层中γ-氨基丁酸、谷氨酸、去甲肾上腺素、乙酰胆碱和多巴胺等五种神经递质的动态变化,从神经递质的角度揭示了全身麻醉的机制。结果发现,在异丙酚诱导的意识丧失过程中,大脑皮层中的γ-氨基丁酸、谷氨酸、去甲肾上腺素和乙酰胆碱的浓度增加。多巴胺水平在使用催眠剂量的异丙酚后没有变化,但在使用手术剂量的异丙酚麻醉后显著增加。值得注意的是,在七氟醚诱导的意识丧失过程中,五种神经递质的浓度普遍下降。此外,神经递质动态网络在非麻醉组中并不同步,但在麻醉组中却高度同步。这些发现表明,神经递质动态网络同步化可能会导致麻醉诱导的意识丧失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Zoological Research
Zoological Research Medicine-General Medicine
CiteScore
7.60
自引率
10.20%
发文量
1937
审稿时长
8 weeks
期刊介绍: Established in 1980, Zoological Research (ZR) is a bimonthly publication produced by Kunming Institute of Zoology, the Chinese Academy of Sciences, and the China Zoological Society. It publishes peer-reviewed original research article/review/report/note/letter to the editor/editorial in English on Primates and Animal Models, Conservation and Utilization of Animal Resources, and Animal Diversity and Evolution.
期刊最新文献
IDH2 and GLUD1 depletion arrests embryonic development through an H4K20me3 epigenetic barrier in porcine parthenogenetic embryos. Pancreatic agenesis and altered m6A methylation in the pancreas of PDX1-mutant cynomolgus macaques. Convergent evolution in high-altitude and marine mammals: Molecular adaptations to pulmonary fibrosis and hypoxia. Maternal sleep deprivation disrupts glutamate metabolism in offspring rats. Nature's disguise: Empirical demonstration of dead-leaf masquerade in Kallima butterflies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1