Essential Guidelines for Manufacturing and Application of Organoids.

IF 2.5 4区 医学 Q3 CELL & TISSUE ENGINEERING International journal of stem cells Pub Date : 2024-05-30 Epub Date: 2024-05-20 DOI:10.15283/ijsc24047
Sun-Ju Ahn, Sungin Lee, Dayeon Kwon, Sejeong Oh, Chihye Park, Sooyeon Jeon, Jin Hee Lee, Tae Sung Kim, Il Ung Oh
{"title":"Essential Guidelines for Manufacturing and Application of Organoids.","authors":"Sun-Ju Ahn, Sungin Lee, Dayeon Kwon, Sejeong Oh, Chihye Park, Sooyeon Jeon, Jin Hee Lee, Tae Sung Kim, Il Ung Oh","doi":"10.15283/ijsc24047","DOIUrl":null,"url":null,"abstract":"<p><p>An organoid is a self-organized three-dimensional structure derived from stem cells that mimics the structure, cell composition, and functional characteristics of specific organs and tissues and is used for evaluating the safety and effectiveness of drugs and the toxicity of industrial chemicals. Organoid technology is a new methodology that could replace testing on animals testing and accelerate development of precision and regenerative medicine. However, large variations in production can occur between laboratories with low reproducibility of the production process and no internationally agreed standards for quality evaluation factors at endpoints. To overcome these barriers that hinder the regulatory acceptance and commercialization of organoids, Korea established the Organoid Standards Initiative in September 2023 with various stakeholders, including industry, academia, regulatory agencies, and standard development experts, through public and private partnerships. This developed general guidelines for organoid manufacturing and quality evaluation and for quality evaluation guidelines for organoid-specific manufacturing for the liver, intestines, and heart through extensive evidence analysis and consensus among experts. This report is based on the common standard guideline v1.0, which is a general organoid manufacturing and quality evaluation to promote the practical use of organoids. This guideline does not focus on specific organoids or specific contexts of use but provides guidance to organoid makers and users on materials, procedures, and essential quality assessment methods at end points that are essential for organoid production applicable at the current technology level.</p>","PeriodicalId":14392,"journal":{"name":"International journal of stem cells","volume":" ","pages":"102-112"},"PeriodicalIF":2.5000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11170116/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of stem cells","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.15283/ijsc24047","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

An organoid is a self-organized three-dimensional structure derived from stem cells that mimics the structure, cell composition, and functional characteristics of specific organs and tissues and is used for evaluating the safety and effectiveness of drugs and the toxicity of industrial chemicals. Organoid technology is a new methodology that could replace testing on animals testing and accelerate development of precision and regenerative medicine. However, large variations in production can occur between laboratories with low reproducibility of the production process and no internationally agreed standards for quality evaluation factors at endpoints. To overcome these barriers that hinder the regulatory acceptance and commercialization of organoids, Korea established the Organoid Standards Initiative in September 2023 with various stakeholders, including industry, academia, regulatory agencies, and standard development experts, through public and private partnerships. This developed general guidelines for organoid manufacturing and quality evaluation and for quality evaluation guidelines for organoid-specific manufacturing for the liver, intestines, and heart through extensive evidence analysis and consensus among experts. This report is based on the common standard guideline v1.0, which is a general organoid manufacturing and quality evaluation to promote the practical use of organoids. This guideline does not focus on specific organoids or specific contexts of use but provides guidance to organoid makers and users on materials, procedures, and essential quality assessment methods at end points that are essential for organoid production applicable at the current technology level.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有机体制造和应用基本指南》。
类器官是一种源自干细胞的自组织三维结构,它模仿特定器官和组织的结构、细胞组成和功能特征,可用于评估药物的安全性和有效性以及工业化学品的毒性。类器官技术是一种新方法,可以取代动物试验,加快精准医学和再生医学的发展。然而,由于生产过程的可重复性较低,而且没有国际公认的终点质量评价因素标准,实验室之间的生产可能会出现很大差异。为了克服这些阻碍监管机构接受类器官并将其商业化的障碍,韩国于 2023 年 9 月与包括产业界、学术界、监管机构和标准制定专家在内的各利益相关方通过公共和私营伙伴关系建立了类器官标准倡议。该倡议通过广泛的证据分析和专家共识,制定了类器官制造和质量评估的一般准则,以及肝脏、肠道和心脏等类器官特定制造的质量评估准则。本报告以通用标准指南v1.0为基础,这是一份通用类器官制造和质量评估指南,旨在促进类器官的实际应用。该指南并不侧重于特定的类器官或特定的使用环境,而是为类器官制造者和使用者提供有关材料、程序和终端基本质量评估方法的指导,这些都是在当前技术水平下生产类器官所必需的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International journal of stem cells
International journal of stem cells Biochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
5.10
自引率
4.30%
发文量
38
期刊介绍: International Journal of Stem Cells (Int J Stem Cells), a peer-reviewed open access journal, principally aims to provide a forum for investigators in the field of stem cell biology to present their research findings and share their visions and opinions. Int J Stem Cells covers all aspects of stem cell biology including basic, clinical and translational research on genetics, biochemistry, and physiology of various types of stem cells including embryonic, adult and induced stem cells. Reports on epigenetics, genomics, proteomics, metabolomics of stem cells are welcome as well. Int J Stem Cells also publishes review articles, technical reports and treatise on ethical issues.
期刊最新文献
Mesenchymal Stem Cells Mediated Suppression of GREM2 Inhibits Renal Epithelial-Mesenchymal Transition and Attenuates the Progression of Diabetic Kidney Disease. The Effect of Nerve Growth Factor on Cartilage Fibrosis and Hypertrophy during In Vitro Chondrogenesis Using Induced Pluripotent Stem Cells. Endothelial Progenitor Cells: A Brief Update. Exosomes Reshape the Osteoarthritic Defect: Emerging Potential in Regenerative Medicine-A Review. Inducing Pluripotency in Somatic Cells: Historical Perspective and Recent Advances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1