{"title":"NEK2 promotes TP53 ubiquitination to enhance the proliferation and migration of TP53 wild-type glioblastoma cells.","authors":"Yu Zhang, Hao Yu, Mengyao He, Wenchao Liu, Shengyou Xiao, Xiangting Wang, Ping Huang, Qiang Huang","doi":"10.4149/neo_2024_240226N80","DOIUrl":null,"url":null,"abstract":"<p><p>The most common primary malignant tumor in the adult brain is glioblastoma multiforme (GBM); however, its underlying pathogenic mechanism remains elusive. The never in mitosis (NIMA)-related kinase 2 (NEK2) has been closely associated with the prognosis of various malignancies. Nevertheless, the complete elucidation of NEK2's potential clinical value, particularly in glioma prognosis and development, remains lacking. U87MG and A172 glioblastoma cells were infected with sh-NEK2 lentivirus or oe-NEK2 plasmid to investigate the effect of NEK2 on cell proliferation, migration, and invasion. Cell viability was measured using CCK-8 and colony formation assays, while Transwell assay was utilized to assess cell migration and invasion. Protein expression levels were determined through western blot analysis. Additionally, CGGA and TCGA databases were used for bioinformatics analysis in order to examine the NEK2 expression. Through comprehensive bioinformatics analysis, we identified elevated mRNA expression levels of NEK2 in gliomas compared to normal tissues, which correlated with poor prognosis among glioma patients. Moreover, functional experiments revealed that silencing NEK2 suppressed glioma cell proliferation while overexpression of NEK2 promoted migration and invasion capabilities. Finally, our study uncovered that NEK2 regulates the malignant progression of TP53 wild-type glioblastoma by facilitating TP53 ubiquitination.</p>","PeriodicalId":19266,"journal":{"name":"Neoplasma","volume":" ","pages":"255-265"},"PeriodicalIF":2.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neoplasma","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4149/neo_2024_240226N80","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The most common primary malignant tumor in the adult brain is glioblastoma multiforme (GBM); however, its underlying pathogenic mechanism remains elusive. The never in mitosis (NIMA)-related kinase 2 (NEK2) has been closely associated with the prognosis of various malignancies. Nevertheless, the complete elucidation of NEK2's potential clinical value, particularly in glioma prognosis and development, remains lacking. U87MG and A172 glioblastoma cells were infected with sh-NEK2 lentivirus or oe-NEK2 plasmid to investigate the effect of NEK2 on cell proliferation, migration, and invasion. Cell viability was measured using CCK-8 and colony formation assays, while Transwell assay was utilized to assess cell migration and invasion. Protein expression levels were determined through western blot analysis. Additionally, CGGA and TCGA databases were used for bioinformatics analysis in order to examine the NEK2 expression. Through comprehensive bioinformatics analysis, we identified elevated mRNA expression levels of NEK2 in gliomas compared to normal tissues, which correlated with poor prognosis among glioma patients. Moreover, functional experiments revealed that silencing NEK2 suppressed glioma cell proliferation while overexpression of NEK2 promoted migration and invasion capabilities. Finally, our study uncovered that NEK2 regulates the malignant progression of TP53 wild-type glioblastoma by facilitating TP53 ubiquitination.