Lisa Drost, Johannes B Finke, Petra Bachmann, Hartmut Schächinger
{"title":"Cold pressor stress effects on cardiac repolarization.","authors":"Lisa Drost, Johannes B Finke, Petra Bachmann, Hartmut Schächinger","doi":"10.1080/10253890.2024.2352626","DOIUrl":null,"url":null,"abstract":"<p><p>The cold pressor test (CPT) elicits strong cardiovascular reactions <i>via</i> activation of the sympathetic nervous system (SNS), yielding subsequent increases in heart rate (HR) and blood pressure (BP). However, little is known on how exposure to the CPT affects cardiac ventricular repolarization. Twenty-eight healthy males underwent both a bilateral feet CPT and a warm water (WW) control condition on two separate days, one week apart. During pre-stress baseline and stress induction cardiovascular signals (ECG lead II, Finometer BP) were monitored continuously. Salivary cortisol and subjective stress ratings were assessed intermittently. Corrected QT (QTc) interval length and T-wave amplitude (TWA) were assessed for each heartbeat and subsequently aggregated individually over baseline and stress phases, respectively. CPT increases QTc interval length and elevates the TWA. Stress-induced changes in cardiac repolarization are only in part and weakly correlated with cardiovascular and cortisol stress-reactivity. Besides its already well-established effects on cardiovascular, endocrine, and subjective responses, CPT also impacts on cardiac repolarization by elongation of QTc interval length and elevation of TWA. CPT effects on cardiac repolarization share little variance with the other indices of stress reactivity, suggesting a potentially incremental value of this parameter for understanding psychobiological adaptation to acute CPT stress.</p>","PeriodicalId":51173,"journal":{"name":"Stress-The International Journal on the Biology of Stress","volume":"27 1","pages":"2352626"},"PeriodicalIF":2.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stress-The International Journal on the Biology of Stress","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/10253890.2024.2352626","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The cold pressor test (CPT) elicits strong cardiovascular reactions via activation of the sympathetic nervous system (SNS), yielding subsequent increases in heart rate (HR) and blood pressure (BP). However, little is known on how exposure to the CPT affects cardiac ventricular repolarization. Twenty-eight healthy males underwent both a bilateral feet CPT and a warm water (WW) control condition on two separate days, one week apart. During pre-stress baseline and stress induction cardiovascular signals (ECG lead II, Finometer BP) were monitored continuously. Salivary cortisol and subjective stress ratings were assessed intermittently. Corrected QT (QTc) interval length and T-wave amplitude (TWA) were assessed for each heartbeat and subsequently aggregated individually over baseline and stress phases, respectively. CPT increases QTc interval length and elevates the TWA. Stress-induced changes in cardiac repolarization are only in part and weakly correlated with cardiovascular and cortisol stress-reactivity. Besides its already well-established effects on cardiovascular, endocrine, and subjective responses, CPT also impacts on cardiac repolarization by elongation of QTc interval length and elevation of TWA. CPT effects on cardiac repolarization share little variance with the other indices of stress reactivity, suggesting a potentially incremental value of this parameter for understanding psychobiological adaptation to acute CPT stress.
期刊介绍:
The journal Stress aims to provide scientists involved in stress research with the possibility of reading a more integrated view of the field. Peer reviewed papers, invited reviews and short communications will deal with interdisciplinary aspects of stress in terms of: the mechanisms of stressful stimulation, including within and between individuals; the physiological and behavioural responses to stress, and their regulation, in both the short and long term; adaptive mechanisms, coping strategies and the pathological consequences of stress.
Stress will publish the latest developments in physiology, neurobiology, molecular biology, genetics research, immunology, and behavioural studies as they impact on the understanding of stress and its adverse consequences and their amelioration.
Specific approaches may include transgenic/knockout animals, developmental/programming studies, electrophysiology, histochemistry, neurochemistry, neuropharmacology, neuroanatomy, neuroimaging, endocrinology, autonomic physiology, immunology, chronic pain, ethological and other behavioural studies and clinical measures.