Yingjun Zhang , Chuanmin Hu , Dennis J. McGillicuddy Jr. , Yonggang Liu , Brian B. Barnes , Vassiliki H. Kourafalou
{"title":"Mesoscale eddies in the Gulf of Mexico: A three-dimensional characterization based on global HYCOM","authors":"Yingjun Zhang , Chuanmin Hu , Dennis J. McGillicuddy Jr. , Yonggang Liu , Brian B. Barnes , Vassiliki H. Kourafalou","doi":"10.1016/j.dsr2.2024.105380","DOIUrl":null,"url":null,"abstract":"<div><p>The Gulf of Mexico (GoM) is characterized by strong mesoscale eddy activities that have been studied extensively, yet the comprehensive three-dimensional (3-D) kinematic properties of GoM eddies are still not well documented. In this study, the 3-D mesoscale eddy activities in the upper layer (0–800 m) of the GoM are characterized using 14-year (1997–2010) global Hybrid Coordinate Ocean Model (HYCOM) outputs. Most eddies in the upper layer (both cyclonic and anticyclonic) have radii of ∼30–60 km and lifespans shorter than 30 days. The spatial distributions of GoM eddies do not vary much with depth, while their intensity decreases with depth. The size of cyclonic eddies does not vary much with depth, while the size of anticyclonic eddies decreases slightly with depth. Cyclonic eddies are often found to be generated in the eastern GoM (especially in the Loop Current region), the Bay of Campeche, and on the continental slope of the Campeche Bank, while anticyclonic eddies are often generated on the northeastern and northwestern GoM continental slopes, and in the central GoM (near 24°N) and the Bay of Campeche (92–94°W). In addition, long-lived GoM eddies (e.g., lifespan >150 days) tend to have intermediate eddy intensity (e.g., 0.13–0.32 for cyclonic eddies at the 10 m level). Both cyclonic and anticyclonic eddies are found to play an important role in the horizontal and vertical transport of heat and salt, and eddy-induced anomalies of water temperature and salinity at both surface and subsurface are generally more pronounced in the eastern GoM than in the western GoM.</p></div>","PeriodicalId":11120,"journal":{"name":"Deep-sea Research Part Ii-topical Studies in Oceanography","volume":"215 ","pages":"Article 105380"},"PeriodicalIF":2.3000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Deep-sea Research Part Ii-topical Studies in Oceanography","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967064524000249","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
The Gulf of Mexico (GoM) is characterized by strong mesoscale eddy activities that have been studied extensively, yet the comprehensive three-dimensional (3-D) kinematic properties of GoM eddies are still not well documented. In this study, the 3-D mesoscale eddy activities in the upper layer (0–800 m) of the GoM are characterized using 14-year (1997–2010) global Hybrid Coordinate Ocean Model (HYCOM) outputs. Most eddies in the upper layer (both cyclonic and anticyclonic) have radii of ∼30–60 km and lifespans shorter than 30 days. The spatial distributions of GoM eddies do not vary much with depth, while their intensity decreases with depth. The size of cyclonic eddies does not vary much with depth, while the size of anticyclonic eddies decreases slightly with depth. Cyclonic eddies are often found to be generated in the eastern GoM (especially in the Loop Current region), the Bay of Campeche, and on the continental slope of the Campeche Bank, while anticyclonic eddies are often generated on the northeastern and northwestern GoM continental slopes, and in the central GoM (near 24°N) and the Bay of Campeche (92–94°W). In addition, long-lived GoM eddies (e.g., lifespan >150 days) tend to have intermediate eddy intensity (e.g., 0.13–0.32 for cyclonic eddies at the 10 m level). Both cyclonic and anticyclonic eddies are found to play an important role in the horizontal and vertical transport of heat and salt, and eddy-induced anomalies of water temperature and salinity at both surface and subsurface are generally more pronounced in the eastern GoM than in the western GoM.
期刊介绍:
Deep-Sea Research Part II: Topical Studies in Oceanography publishes topical issues from the many international and interdisciplinary projects which are undertaken in oceanography. Besides these special issues from projects, the journal publishes collections of papers presented at conferences. The special issues regularly have electronic annexes of non-text material (numerical data, images, images, video, etc.) which are published with the special issues in ScienceDirect. Deep-Sea Research Part II was split off as a separate journal devoted to topical issues in 1993. Its companion journal Deep-Sea Research Part I: Oceanographic Research Papers, publishes the regular research papers in this area.