Detecting and mitigating security anomalies in Software-Defined Networking (SDN) using Gradient-Boosted Trees and Floodlight Controller characteristics
Tohid Jafarian , Ali Ghaffari , Ali Seyfollahi , Bahman Arasteh
{"title":"Detecting and mitigating security anomalies in Software-Defined Networking (SDN) using Gradient-Boosted Trees and Floodlight Controller characteristics","authors":"Tohid Jafarian , Ali Ghaffari , Ali Seyfollahi , Bahman Arasteh","doi":"10.1016/j.csi.2024.103871","DOIUrl":null,"url":null,"abstract":"<div><p>Cutting-edge and innovative software solutions are provided to address network security, network virtualization, and other network-related challenges in highly congested SDN-powered networks. However, these networks are susceptible to the same security issues as traditional networks. For instance, SDNs are significantly vulnerable to distributed denial of service (DDoS) attacks. Previous studies have suggested various anomaly detection techniques based on machine learning, statistical analysis, or entropy measurement to combat DDoS attacks and other security threats in SDN networks. However, these techniques face challenges such as collecting sufficient and relevant flow data, extracting and selecting the most informative features, and choosing the best model for identifying and preventing anomalies. This paper introduces a new and advanced multi-stage modular approach for anomaly detection and mitigation in SDN networks. The approach consists of four modules: data collection, feature selection, anomaly classification, and anomaly response. The approach utilizes the NetFlow standard to gather data and generate a dataset, employs the Information Gain Ratio (IGR) to select the most valuable features, uses gradient-boosted trees (GBT), and leverages Representational State Transfer Application Programming Interfaces (REST API) and Static Entry Pusher within the floodlight controller to construct an exceptionally efficient structure for detecting and mitigating anomalies in SDN design. We conducted experiments on a synthetic dataset containing 15 types of anomalies, such as DDoS attacks, port scans, worms, etc. We compared our model with four existing techniques: SVM, KNN, DT, and RF. Experimental results demonstrate that our model outperforms the existing techniques in terms of enhancing Accuracy (AC) and Detection Rate (DR) while simultaneously reducing Classification Error (CE) and False Alarm Rate (FAR) to 98.80 %, 97.44 %, 1.2 %, and 0.38 %, respectively.</p></div>","PeriodicalId":50635,"journal":{"name":"Computer Standards & Interfaces","volume":"91 ","pages":"Article 103871"},"PeriodicalIF":4.1000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Standards & Interfaces","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920548924000400","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Cutting-edge and innovative software solutions are provided to address network security, network virtualization, and other network-related challenges in highly congested SDN-powered networks. However, these networks are susceptible to the same security issues as traditional networks. For instance, SDNs are significantly vulnerable to distributed denial of service (DDoS) attacks. Previous studies have suggested various anomaly detection techniques based on machine learning, statistical analysis, or entropy measurement to combat DDoS attacks and other security threats in SDN networks. However, these techniques face challenges such as collecting sufficient and relevant flow data, extracting and selecting the most informative features, and choosing the best model for identifying and preventing anomalies. This paper introduces a new and advanced multi-stage modular approach for anomaly detection and mitigation in SDN networks. The approach consists of four modules: data collection, feature selection, anomaly classification, and anomaly response. The approach utilizes the NetFlow standard to gather data and generate a dataset, employs the Information Gain Ratio (IGR) to select the most valuable features, uses gradient-boosted trees (GBT), and leverages Representational State Transfer Application Programming Interfaces (REST API) and Static Entry Pusher within the floodlight controller to construct an exceptionally efficient structure for detecting and mitigating anomalies in SDN design. We conducted experiments on a synthetic dataset containing 15 types of anomalies, such as DDoS attacks, port scans, worms, etc. We compared our model with four existing techniques: SVM, KNN, DT, and RF. Experimental results demonstrate that our model outperforms the existing techniques in terms of enhancing Accuracy (AC) and Detection Rate (DR) while simultaneously reducing Classification Error (CE) and False Alarm Rate (FAR) to 98.80 %, 97.44 %, 1.2 %, and 0.38 %, respectively.
期刊介绍:
The quality of software, well-defined interfaces (hardware and software), the process of digitalisation, and accepted standards in these fields are essential for building and exploiting complex computing, communication, multimedia and measuring systems. Standards can simplify the design and construction of individual hardware and software components and help to ensure satisfactory interworking.
Computer Standards & Interfaces is an international journal dealing specifically with these topics.
The journal
• Provides information about activities and progress on the definition of computer standards, software quality, interfaces and methods, at national, European and international levels
• Publishes critical comments on standards and standards activities
• Disseminates user''s experiences and case studies in the application and exploitation of established or emerging standards, interfaces and methods
• Offers a forum for discussion on actual projects, standards, interfaces and methods by recognised experts
• Stimulates relevant research by providing a specialised refereed medium.